Math, asked by sajinirag, 4 months ago

please help me

.
Math's
.
please help me please

Attachments:

Answers

Answered by EnchantedGirl
25

Given:-

  • \sf \frac{6}{x+2y} +\frac{5}{x-2y} =-3
  • \sf \frac{3}{x+2y} +\frac{7}{x-2y} =-6
  • And,x+2y≠0;x-2y≠0.

\\

To find:-

  • Value of x & y.

\\

Solution:-

\\

Let 1/x+2y = p & 1/x-2y = q.

Then,

The given equations will be:

→ 6p+5q = -3....(1)

→ 3p+7q = -6.....(2)

\\

Multiplying eqn(2) with 2,

→ 2×(3p+7q=-6)

→ 6p + 14q = -12 .....(3)

\\

Substracting eqn(1) from (3),

6p+14q = -12

6p+5q = -3

_________

     9q = -9

        q = -1

\\

Substituting value of 'q' in eqn(1):

→ 6p+5q = -3

→ 6p+5(-1) = -3

→ 6p - 5 = -3

→ 6p = 5 - 3 = 2

→ p = 2/6

p = 1/3

\\

We have,

\mapsto \sf \frac{1}{x+2y} =p \ ;\ \frac{1}{x-2y} =q\\

Now,

:\implies \sf \frac{1}{x+2y} = p\\\\:\implies \sf \frac{1}{x+2y} =\frac{1}{3} \\\\:\implies \sf x+2y = 3....(4)\\\\

And,

:\implies \sf \frac{1}{x-2y} = q \\\\:\implies \sf \frac{1}{x-2y} =-1\\\\:\implies 1=-x+2y....(5)\\\\

Substracting eqn(4) from (5),

\\

x+2y = 3

-x+2y = 1

________

     4y = 4

        y = 1

\mapsto \boxed{\underline{\sf y = 1}}

Now,

:\implies \sf x+2y=3\\\\:\implies \sf x+2(1)=3\\\\:\implies \sf x =3-2 =1\\\\:\implies  \boxed{\underline{\sf x=1}}

Therefore,

Values of x is 1 and y is 1.

___________

Answered by Anonymous
0

★Given:-

\sf \frac{6}{x+2y} +\frac{5}{x-2y} =-3

\sf \frac{3}{x+2y} +\frac{7}{x-2y} =-6

And,x+2y≠0;x-2y≠0.

\\

★To find:-

Value of x & y.

\\

★Solution:-

\\

Let 1/x+2y = p & 1/x-2y = q.

Then,

The given equations will be:

→ 6p+5q = -3....(1)

→ 3p+7q = -6.....(2)

\\

Multiplying eqn(2) with 2,

→ 2×(3p+7q=-6)

→ 6p + 14q = -12 .....(3)

\\

Substracting eqn(1) from (3),

6p+14q = -12

6p+5q = -3

_________

     9q = -9

        q = -1

\\

Substituting value of 'q' in eqn(1):

→ 6p+5q = -3

→ 6p+5(-1) = -3

→ 6p - 5 = -3

→ 6p = 5 - 3 = 2

→ p = 2/6

→ p = 1/3

\\

We have,

\mapsto \sf \frac{1}{x+2y} =p \ ;\ \frac{1}{x-2y} =q\\

Now,

:\implies \sf \frac{1}{x+2y} = p\\\\:\implies \sf \frac{1}{x+2y} =\frac{1}{3} \\\\:\implies \sf x+2y = 3....(4)\\\\

And,

:\implies \sf \frac{1}{x-2y} = q \\\\:\implies \sf \frac{1}{x-2y} =-1\\\\:\implies 1=-x+2y....(5)\\\\

Substracting eqn(4) from (5),

\\

x+2y = 3

-x+2y = 1

________

     4y = 4

        y = 1

\mapsto \boxed{\underline{\sf y = 1}}

Now,

:\implies \sf x+2y=3\\\\:\implies \sf x+2(1)=3\\\\:\implies \sf x =3-2 =1\\\\:\implies  \boxed{\underline{\sf x=1}}

Therefore,

Values of x is 1 and y is 1.

___________

Similar questions