Please help me out
Answers
Solution
Given :-
- a + b + c = 8 ---------(1)
- ab + bc + ca = 11 ------(2)
Find :-
- Value of ( a³ + b³ + c³ - 3abc)
Explanation
Important Formula
★ ( a³ + b³ + c³ - 3abc) = (a + b +c)(a²+b²+c²-ab-bc-ca)
Now, Squaring both Side of equation(1)
==> (a + b + c)² = 8²
==> ( a²+b²+c²+2ab+2bc+2ca) = 64
==> (a²+b²+c²)+2(ab+bc+ca) = 64
keep value by equ(2)
==> (a²+b²+c²)+2(11) = 64
==> (a²+b²+c²) = 64 - 22
==> (a²+b²+c²) = 42 ----------(3)
So, Now Calculate ( a³ + b³ + c³ - 3abc)
Keep Value by equ(1),(2) & (3)
==> ( a³ + b³ + c³ - 3abc) = (8) * (42 - 11)
==> ( a³ + b³ + c³ - 3abc) = 8 * 31
==> ( a³ + b³ + c³ - 3abc) = 248
Hence
- Value of ( a³ + b³ + c³ - 3abc) will be 248
_________________
Given ,
a + b + c = 8 and
ab + bc + ac = 11
We need to find the value of a³ + b³ + c³ - 3abc
Here we need to use a formula , i.e.,
- ( a³ + b³ + c³ - 3abc ) = ( a + b + c ) ( a² + b² + c² - ab - bc - ac )
( a + b + c ) = 8
Squaring on both sides , we get ,
⇒ ( a + b + c )² = 64
⇒ a² + b² + c² + 2ab + 2bc + 2ac = 64
⇒ ( a² + b² + c² ) = 64 - 2 ( ab + bc + ac )
⇒ ( a² + b² + c² ) = 64 - 22
⇒ ( a² + b² + c² ) = 42 ... (1)
Now our required ,