Math, asked by guptagungun827, 5 hours ago

please help me please

3 If a + b + c = 5 and ab + bc + ca = 10, prove that a3 + b3 + c3 - 3abc = -25.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a + b + c = 5 -  -  -  - (1)

and

\rm :\longmapsto\:ab + bc + ca = 10 -  -  -  - (2)

Now, Consider

\rm :\longmapsto\:a + b + c = 5

On squaring both sides, we get

\rm :\longmapsto\: {(a + b + c)}^{2} =  {5}^{2}

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 2ab + 2bc + 2ca = 25

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 2(ab + bc + ca) = 25

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 2(10) = 25 \:  \:  \:  \{using \: equation \: (2) \}

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 20 = 25

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} = 25 - 20

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} = 5 -  -  -  - (3)

Now, Consider

\rm :\longmapsto\: {a}^{3} +  {b}^{3} +  {c}^{3} - 3abc

 \: \rm   \: = \: (a + b + c)( {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ca)

 \: \rm   \: = \: (a + b + c)[{a}^{2} +  {b}^{2} +  {c}^{2} - (ab + bc + ca)]

On substituting the values from equation (1), (2) and (3), we get

\rm \:  =  \: (5)(5 - 10)

\rm \:  =  \: (5)( - 5)

\rm \:  =  \:  - 25

Hence,

 \purple{\rm\implies \:\boxed{\tt{ \:  \:  \: {a}^{3} +  {b}^{3} +  {c}^{3} - 3abc =  - 25 \:  \:  \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE IDENTITIES TO KNOW

 \green{\boxed{\tt{  {(x - y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}}}}

 \green{\boxed{\tt{  {(x + y)}^{2} =  {x}^{2} +  2xy +  {y}^{2}}}}

 \blue{\boxed{\tt{  {(x + y)}^{3} =  {x}^{3} +  3xy(x + y) +  {y}^{3}}}}

 \blue{\boxed{\tt{  {(x  -  y)}^{3} =  {x}^{3}   - 3xy(x - y) - {y}^{3}}}}

 \gray{\boxed{\tt{  {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}}}

 \gray{\boxed{\tt{  {(x + y)}^{2} + {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}}}

Answered by OoAryanKingoO78
1

Answer:

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:a + b + c = 5 -  -  -  - (1)

and

\rm :\longmapsto\:ab + bc + ca = 10 -  -  -  - (2)

Now, Consider

\rm :\longmapsto\:a + b + c = 5

On squaring both sides, we get

\rm :\longmapsto\: {(a + b + c)}^{2} =  {5}^{2}

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 2ab + 2bc + 2ca = 25

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 2(ab + bc + ca) = 25

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 2(10) = 25 \:  \:  \:  \{using \: equation \: (2) \}

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} + 20 = 25

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} = 25 - 20

\rm :\longmapsto\: {a}^{2} +  {b}^{2} +  {c}^{2} = 5 -  -  -  - (3)

Now, Consider

\rm :\longmapsto\: {a}^{3} +  {b}^{3} +  {c}^{3} - 3abc

 \: \rm   \: = \: (a + b + c)( {a}^{2} +  {b}^{2} +  {c}^{2} - ab - bc - ca)

 \: \rm   \: = \: (a + b + c)[{a}^{2} +  {b}^{2} +  {c}^{2} - (ab + bc + ca)]

On substituting the values from equation (1), (2) and (3), we get

\rm \:  =  \: (5)(5 - 10)

\rm \:  =  \: (5)( - 5)

\rm \:  =  \:  - 25

Hence,

 \purple{\rm\implies \:\boxed{\tt{ \:  \:  \: {a}^{3} +  {b}^{3} +  {c}^{3} - 3abc =  - 25 \:  \:  \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE IDENTITIES TO KNOW

 \green{\boxed{\tt{  {(x - y)}^{2} =  {x}^{2} - 2xy +  {y}^{2}}}}

 \green{\boxed{\tt{  {(x + y)}^{2} =  {x}^{2} +  2xy +  {y}^{2}}}}

 \blue{\boxed{\tt{  {(x + y)}^{3} =  {x}^{3} +  3xy(x + y) +  {y}^{3}}}}

 \blue{\boxed{\tt{  {(x  -  y)}^{3} =  {x}^{3}   - 3xy(x - y) - {y}^{3}}}}

 \gray{\boxed{\tt{  {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}}}

 \gray{\boxed{\tt{  {(x + y)}^{2} + {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}}}

Similar questions