please help me Q.27 please
Answers
Step-by-step explanation:
See image
Draw a ray OP opposite to ray OA.
By adding equations, (1) and (2), we get,
Hence proved
I hope it is helpful
Step-by-step explanation:
RaysOA,OB,OC,ODandOE
havethecommonendpointO.
\large{ \underline{ \bold{ \blue{To \: prove :-}}}}
Toprove:−
\angle{AOB}+\angle{BOC}+\angle{COD} + \angle{DOE}+\angle{EOA} = 360°∠AOB+∠BOC+∠COD+∠DOE+∠EOA=360°
\large{ \underline{ \bold{ \purple{Composition: -}}}}
Composition:−
Draw a ray OP opposite to ray OA.
\begin{gathered}\bold{\angle{AOB}, \angle{BOC} \: and \angle{COP}} \\ \bold{ are \: linear \: pair \: angles,}\end{gathered}
∠AOB,∠BOCand∠COP
arelinearpairangles,
\angle{AOB}+ \angle{BOC}+ \angle{COP }= 180° - - - -(1)∠AOB+∠BOC+∠COP=180°−−−−(1)
\begin{gathered} \bold{Also, \angle{AOE}, \angle{DOE} and \angle{DOP}} \\ \bold{are \: linear \: pair \: angles,}\end{gathered}
Also,∠AOE,∠DOEand∠DOP
arelinearpairangles,
\angle{AOE}+ \angle{DOE}+ \angle{DOP}=180° - - - - (2)∠AOE+∠DOE+∠DOP=180°−−−−(2)
By adding equations, (1) and (2), we get,
\angle{AOB}+ \angle{BOC}+\angle{COP}+\angle{ AOE} \angle{DOE}+\angle{DOP}= 180°+180°∠AOB+∠BOC+∠COP+∠AOE∠DOE+∠DOP=180°+180°
\angle{AOB}+ \angle{BOC}+ (\angle{COP}+\angle{DOP})+\angle{AOE}+\angle{DOE} = 360°∠AOB+∠BOC+(∠COP+∠DOP)+∠AOE+∠DOE=360°
\angle{AOB}+ \angle{BOC}+ \angle{COD}+\angle{DOE}+\angle{AOE} = 360°∠AOB+∠BOC+∠COD+∠DOE+∠AOE=360°