Math, asked by Rehansir, 5 hours ago

please help me solve the question given below
I will mark the right answer brainliest ​

Attachments:

Answers

Answered by vipashyana1
1

Answer:

x =   \sqrt{ \frac{5 + 2 \sqrt{6} }{5 - 2 \sqrt{6} } }  \\  =   \sqrt{ \frac{5 + 2 \sqrt{6} }{5 - 2 \sqrt{6} } }  \times  \sqrt{ \frac{5 + 2 \sqrt{6} }{5 + 2 \sqrt{6} } }  \\  =   \sqrt{ \frac{(5 + 2 \sqrt{6})(5 + 2 \sqrt{6} ) }{(5 - 2 \sqrt{6})(5 + 2 \sqrt{6} ) } }  \\  =  \sqrt{ \frac{ {(5 + 2 \sqrt{6}) }^{2} }{ {(5)}^{2} -  {(2 \sqrt{6}) }^{2}  } }  \\  =   \sqrt{ \frac{ {(5 + 2 \sqrt{6} )}^{2} }{25 - 24} }  \\  =  \sqrt{ \frac{ {(5 + 2 \sqrt{6} )}^{2} }{1} }  \\  =  \sqrt{ {(5 + 2 \sqrt{6} )}^{2} }  \\  = 5 + 2 \sqrt{6}  \\  {x}^{2}  {(x - 10)}^{2}  = 1 \\  {(5 + 2 \sqrt{6} )}^{2}  {(5 + 2 \sqrt{6}  - 10)}^{2}  = 1 \\( 25 + 24 + 20 \sqrt{6} ) {(2 \sqrt{6} - 10 + 5) }^{2}  = 1 \\ (49 + 20 \sqrt{6} ) {(2 \sqrt{6} - 5) }^{2}  = 1 \\ (49 + 20 \sqrt{6} )(24 + 25 + 20 \sqrt{6} ) = 1 \\ (49 + 20 \sqrt{6} )(49 - 20 \sqrt{6} ) = 1 \\  {(49)}^{2}  -  {(20 \sqrt{6}) }^{2}  = 1 \\ 2401 - 2400 = 1 \\ 1 = 1 \\ LHS=RHS \\ Hence \: proved

Similar questions