Math, asked by mittie, 8 months ago

Please help me solve this question ....ASAP​

Attachments:

Answers

Answered by Arceus02
5

\underline{\textbf{\textsf{ \purple{Solution}:- }}}

\sf{ {2}^{(x -2)} + {2}^{(3 - x)} = 3}

\longrightarrow \sf{ \dfrac{ 2^x }{ 2^2 } + \dfrac{ 2^3 }{ 2^x } = 3}

Let \sf{ 2^x } be \sf{ a }

\longrightarrow \sf{ \dfrac{a}{4} + \dfrac{8}{a} = 3}

\longrightarrow \sf{ \dfrac{ {a}^{2} + 32   }{4a} = 3}

\longrightarrow \sf{ a^2 + 32 = 12a }

\longrightarrow \sf{ a^2 - 12a + 32 = 0 }

\longrightarrow \sf{ a^2 - 4a - 8a + 32 = 0 }

\longrightarrow \sf{ a(a - 4) - 8(a - 4) = 0 }

 \longrightarrow \sf{ (a - 4)(a - 8) = 0}

\sf{\\}

So,

Either,

\sf{ (a - 4) = 0 }

\longrightarrow \underline{\sf{ \blue{a = 4} }}

\sf{\\}

Or,

\sf{ (a - 8) = 0 }

\longrightarrow \underline{\sf{ \blue{a = 8} }}

\sf{\\}

\underline{\textsf{ \blue{If a = 4:-} }}

\sf{ 2^x = a }

\longrightarrow \sf{ 2^x = 4 }

\longrightarrow \sf {2^x = 2^2 }

\longrightarrow \underline{\sf{\green{x = 2 } }}

\sf{\\}

\underline{\textsf{ \blue{If a = 8:-} }}

\sf{ 2^x = a }

\longrightarrow \sf{ 2^x = 8 }

\longrightarrow \sf {2^x = 2^3 }

\longrightarrow \underline{\sf{ \green{x = 3} }}

\sf{\\}

Hence,

The answer is,

\longrightarrow \underline{\underline{\sf{ \green{x = 2\:or\:x = 3} }}}

Similar questions