Math, asked by RITESHMOHAMMAD, 2 days ago

please help me this question​

Attachments:

Answers

Answered by sonalic99
0

Answer:

x is greater than 3 or less than -5

Step-by-step explanation:

Case 1

x + 1 greater than 4

x greater than 4-1

x greater than 3

Case 2

-(x + 1) greater than 4

x + 1 less than -4

x less than -5

Therefore

x is greater than 3 or less than -5

Answered by anindyaadhikari13
4

Solution:

Given Inequality:

 \rm \longrightarrow |x + 1| > 4, x \in R

There can be two possible cases:

 \rm 1. \: x + 1 > 4, x  +1> 0

 \rm 2.  - ( x + 1 )> 4, x  +1< 0

Solving (1):

 \rm \longrightarrow x + 1 > 4

 \rm \longrightarrow x + 1 - 1 >4 - 1

 \rm \longrightarrow x >3

 \rm \longrightarrow x \in (3, \infty]

Solving (2):

 \rm \longrightarrow - ( x + 1 )>4

 \rm \longrightarrow ( x + 1 ) <  - 4

 \rm \longrightarrow x + 1 - 1 <  - 4 - 1

 \rm \longrightarrow x <  -5

 \rm \longrightarrow x \in [ - \infty,  - 5)

Combining both, we get:

 \rm \longrightarrow x \in [ - \infty,  - 5) \cup (3, \infty]

★ Which is our required answer.

Answer:

 \rm \hookrightarrow x \in [ - \infty,  - 5) \cup (3, \infty]

Note:

Absolute value is defined as:

\rm\longrightarrow |x| = \begin{cases}\rm x\: if\: x > 0\\ \rm -x\: if\: x < 0\end{cases}

Similar questions