Math, asked by varun000, 1 year ago

Please help me to solve this...... complete steps...

11th standard

Attachments:

Answers

Answered by sushant2505
5
Hi...☺

Here is your answer...✌

GIVEN THAT,

f(x) = log \frac{1 + x}{1 - x} \:\:\: \:\:\: .....(1)\\
TO PROVE :

f( \frac{2x}{1 + {x}^{2} } ) = 2f(x) \\

PROOF :

LHS

f( \frac{2x}{1 + {x}^{2} }) = log \: \frac{1 + \frac{2x}{1 + {x}^{2} } }{1 - \frac{2x}{1 + {x}^{2} } } \\ \\ = log \: \frac{ \frac{1 + {x}^{2} + 2x }{1 + {x}^{2} }}{ \frac{1 + {x}^{2} - 2x}{1 + {x}^{2} } } \\ \\ = log \: \frac{1 + {x}^{2} + 2x }{1 + {x}^{2} - 2x } \\ \\ = log \: \frac{{(1 + x )}^{2} }{{(1 - x)}^{2} } \\ \\ = log \: {( \frac{1 + {x}}{1 - x} ) }^{2} \\ \\ = 2 \: log( \frac{1 + x}{1 - x} ) \: \: \: \: \: \: \: \: \: [ \because log( {a})^{b} = b log(a) ] \\ \\ = 2f(x) \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: [from \: (1)] \\

= RHS [ Proved ]

varun000: hey, thank you so much....
rahuljha222: please mark my asnwer as brainliest
sushant2505: My pleasure @varun000 :-)
varun000: hey, can you solve the other one? plz
Similar questions