Math, asked by HelpfulOPS, 10 hours ago

please help me with the above question
thank you ​

Attachments:

Answers

Answered by spacelover123
37

Question

Simplify:

\dfrac{a^{2n+3} \times a^{(2n + 1)(n+2)} }{(a^{3})^{2n+1} \times a^{n(2n+1)}}

_________________________

Answer

First, we'll simplify the exponential part of the given expression by monomial and binomial multiplication.

\implies \dfrac{a^{2n+3} \times a^{(2n + 1)(n+2)} }{(a^{3})^{2n+1} \times a^{n(2n+1)}}

\implies \dfrac{a^{2n+3} \times a^{2n(n+2)+1(n+2)} }{(a^{3})^{2n+1} \times a^{2n^{2}+n}}

\implies \dfrac{a^{2n+3} \times a^{2n^{2}+4n+n+2} }{(a^{3})^{2n+1} \times a^{2n^{2}+n}}

\implies \dfrac{a^{2n+3} \times a^{2n^{2}+5n+2} }{(a^{3})^{2n+1} \times a^{2n^{2}+n}}

Apply this Law of Exponent -: (a^{m})^{n} = a^{m\times n}

\implies \dfrac{a^{2n+3} \times a^{2n^{2}+5n+2} }{(a^{3})^{2n+1} \times a^{2n^{2}+n}}

\implies \dfrac{a^{2n+3} \times a^{2n^{2}+5n+2} }{a^{3(2n+1)} \times a^{2n^{2}+n}}

\implies \dfrac{a^{2n+3} \times a^{2n^{2}+5n+2} }{a^{6n+3} \times a^{2n^{2}+n}}

Apply this Law of Exponent -: a^{m} + a^{n} = a^{m+n}

\implies \dfrac{a^{2n+3} \times a^{2n^{2}+5n+2} }{a^{6n+3} \times a^{2n^{2}+n}}

\implies \dfrac{a^{2n+3+2n^{2}+5n+2} }{a^{6n+3+2n^{2}+n}}

\implies \dfrac{a^{7n+5+2n^{2}} }{a^{7n+3+2n^{2}}}

Apply this Law of Exponent -: \dfrac{a^{m}}{a^{n}} = a^{m-n}

\implies \dfrac{a^{7n+5+2n^{2}} }{a^{7n+3+2n^{2}}}

\implies {a^{(7n+5+2n^{2}) - (7n + 3 + 2n^{2})} }

\implies {a^{7n+5+2n^{2} - 7n - 3 - 2n^{2}} }

\implies {a^{7n- 7n +5- 3 +2n^{2} - 2n^{2}} }

\implies a^{2}

\therefore \bf \dfrac{a^{2n+3} \times a^{(2n + 1)(n+2)} }{(a^{3})^{2n+1} \times a^{n(2n+1)}} = a^{2}

_________________________

Answered by KnightLyfe
48

Question:

 \sf{\dfrac{{a}^{2n + 3} \times {a} ^{(2n + 1)(n + 2)}}{({a}^{3})^{2n + 1} \times  {a}^{n(2n + 1)}}}

Solution:

Here, we have been asked to simplify the given equation.

Let us firstly simplify the denominator of the equation by using indices rules. The law we firstly need to use is:

\leadsto \sf{{({x}^{m})^{n}={x}^{m\times n}}}

\longrightarrow\: \: \: \sf{\dfrac{{a}^{2n + 3} \times {a} ^{(2n + 1)(n + 2)}}{{a}^{3\times (2n + 1)} \times  {a}^{2{n}^{2}+1n}}}

Performing multiplication on denominator's exponents.

\longrightarrow\: \: \: \sf{\dfrac{{a}^{2n + 3} \times {a} ^{(2n + 1)(n + 2)}}{{a}^{6n+3} \times  {a}^{2{n}^{2}+n}}}

Now, we can observe that the denominator is in the form of \sf{{x}^{m}\times {x}^{n}} .

We know,

\leadsto\sf{{x}^{m}\times {x}^{n}={x}^{m+n}}

Using, this law in the equation.

\longrightarrow\: \: \: \sf{\dfrac{{a}^{2n + 3} \times {a} ^{(2n + 1)(n + 2)}}{{a}^{6n+3+2{n}^{2}+n}}}

Performing addition on the denominator's exponent.

\longrightarrow\: \: \: \sf{\dfrac{{a}^{2n + 3} \times {a} ^{(2n + 1)(n + 2)}}{{a}^{7n+3+2{n}^{2}}}}

Now, let's simplify the numerator part.

We observe that the numerator of the equation is in the form of \sf{{x}^{m}\times {x}^{n}} . We know,

\leadsto\sf{{x}^{n}\times {x}^{n}={x}^{m+n}}

Using this law in the equation,

\longrightarrow\: \: \: \sf{\dfrac{{a}^{2n+3+(2n+1)(n+2)}}{{a}^{7n+3+2{n}^{2}}}}

\longrightarrow\: \: \: \sf{\dfrac{{a}^{2n+3+2{n}^{2}+5n+2}}{{a}^{7n+3+2{n}^{2}}}}

Performing addition on numerator's exponents.

\longrightarrow\: \: \: \sf{\dfrac{{a}^{2{n}^{2}+7n+5}}{{a}^{7n+3+2{n}^{2}}}}

Now, we observe that the whole equation is in the form of \sf{\dfrac{{x}^{m}}{{x}^{n}}}

We know,

\leadsto\sf{\dfrac{{x}^{m}}{{x}^{n}}={x}^{m-n}}

Using the law in the equation, we get:

\longrightarrow\: \: \: \sf{{a}^{(2{n}^{2}+7n+5)-(2{n}^{2}-7n-3)}}

\longrightarrow\: \: \: \sf{{a}^{2{n}^{2}+7n+5-2{n}^{2}-7n-3}}

Cancelling +2n² with -2n² and +7n with -7n.

\longrightarrow\: \: \: \sf{{a}^{5-3}}

Performing subtraction.

\longrightarrow\: \: \: \sf{{a}^{2}}

Required Answer:

Therefore,  \bold{\dfrac{{a}^{2n + 3} \times {a} ^{(2n + 1)(n + 2)}}{({a}^{3})^{2n + 1} \times  {a}^{n(2n + 1)}}={a}^{2}}

Similar questions