Math, asked by shrutigupta2205, 11 months ago

please help me with these questions ​

Attachments:

Answers

Answered by amitkumar44481
2

AnsWer :

i)

  • x = -2. and x = 5.

ii)

  • x = 3/2 and x = -2.

iii)

  • x = -5/√2 and x = -√2.

iv)

  • x = 1/4 and x = 1/4

v)

  • x = 1/10 and x = 1/10.

Solution :

Part ( iv )

We have equation,

 \tt\dagger \:  \:  \:  \:  \: 2 {x}^{2}  - x +  \dfrac{1}{8}  = 0.

 \tt \longmapsto  \dfrac{16 {x}^{2}  - 8x  + 1}{8}  = 0.

 \tt \longmapsto  {16x}^{2}  - 8x + 1 = 0.

Let's Compare with General Equation,

 \tt\dagger \:  \:  \:  \:  \:  a {x}^{2}  + bx + c = 0. \:  \:  \:  \:  \red{a \neq0.}

Where as,

  • a = 16.
  • b = -8.
  • c = 1.

\rule{90}1

Now, Apply Splitting the Middle term.

 \tt \longmapsto  {16x}^{2}   - 8x + 1 = 0.

\begin{array}{r | l} 2 & 16 \\ \cline{2-2} 2 & 8 \\ \cline{2-2} 2 & 4 \\ \cline{2-2} 2 & 2 \\\cline{2-2}    &  1  \\ \end{array}

 \tt \longmapsto 16 {x}^{2}  - 4x - 4x  + 1 = 0.

 \tt \longmapsto 4x(4x - 1) - 1(4x - 1) = 0.

 \tt \longmapsto (4x - 1)(4x - 1) = 0.

\rule{20}1

Either,

 \tt \mapsto 4x - 1 = 0.

 \tt\mapsto x =  \dfrac{1}{4}

\rule{20}1

Or,

 \tt \mapsto 4x - 1 = 0.

 \tt\mapsto x =  \dfrac{1}{4}

\rule{200}3

Part ( v )

We have equation,

 \tt\dagger \:  \:  \:  \:  \: 100 {x}^{2}  - 20x  + 1 = 0

Let's Compare with General Equation,

 \tt\dagger \:  \:  \:  \:  \:  a {x}^{2}  + bx + c = 0. \:  \:  \:  \:  \red{a \neq0.}

Where as,

  • a = 100.
  • b = -20
  • c = 1.

Now, Apply Splitting the Middle term.

 \tt\longmapsto 100 {x}^{2}  - 20x + 1 = 0.

\begin{array}{r | l} 2 & 100 \\ \cline{2-2} 2 & 50 \\ \cline{2-2} 5 & 25 \\ \cline{2-2} 5 & 5 \\\cline{2-2}    &  1  \\ \end{array}

 \tt\longmapsto 100 {x}^{2}  - 10x - 10x + 1 = 0.

 \tt\longmapsto 10x(10 - 1) - 1(10 - 1) = 0.

 \tt\longmapsto (10x - 1)(10x - 1) = 0.

\rule{20}1

Either,

 \tt\mapsto 10x - 1 = 0.

 \tt\mapsto x =  \frac{1}{10}

\rule{20}1

Or,

 \tt\mapsto 10x - 1 = 0.

 \tt\mapsto x =  \frac{1}{10}

\rule{200}3

Note : All parts provide in attachment.

Attachments:
Similar questions