Math, asked by cleotasha, 1 year ago

please help me with this!​

Attachments:

Answers

Answered by Anonymous
12

\mathrm{1.\;Question :\;\dfrac{1}{\sqrt{5} + \sqrt{3}} + \dfrac{\sqrt{5} - \sqrt{3}}{2}}

\mathrm{Multiply\;and\;Divide\;first\;fraction\;with\;\sqrt{5} - \sqrt{3}}

\mathrm{\longrightarrow \dfrac{\sqrt{5} - \sqrt{3}}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} + \dfrac{\sqrt{5} - \sqrt{3}}{2}}

\mathrm{\longrightarrow \dfrac{\sqrt{5} - \sqrt{3}}{(\sqrt{5})^2 - (\sqrt{3})^2} + \dfrac{\sqrt{5} - \sqrt{3}}{2}}

\mathrm{\longrightarrow \dfrac{\sqrt{5} - \sqrt{3}}{5 - 3} + \dfrac{\sqrt{5} - \sqrt{3}}{2}}

\mathrm{\longrightarrow \dfrac{\sqrt{5} - \sqrt{3}}{2} + \dfrac{\sqrt{5} - \sqrt{3}}{2}}

\mathrm{\longrightarrow 2\left(\dfrac{\sqrt{5} - \sqrt{3}}{2}\right)}

\mathrm{\longrightarrow \sqrt{5} - \sqrt{3}}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

\mathrm{2.\;Consider :\;\dfrac{7 + \sqrt{3}}{7 - \sqrt{3}}}

\mathrm{Multiply\;and\;Divide\;with\;\sqrt{7} + \sqrt{3}}

\mathrm{\longrightarrow\dfrac{(7 + \sqrt{3})(7 + \sqrt{3})}{(7 - \sqrt{3})(7 + \sqrt{3})}}

\mathrm{\longrightarrow\dfrac{(7 + \sqrt{3})^2}{(7)^2 - (\sqrt{3})^2}}

\mathrm{\longrightarrow\dfrac{(7)^2 + (\sqrt{3})^2 + 2(7)(\sqrt{3})}{49 - 3}}

\mathrm{\longrightarrow\dfrac{49 + 3 + 14\sqrt{3}}{46}}

\mathrm{\longrightarrow\dfrac{52 + 14\sqrt{3}}{46}}

\mathrm{Consider :\;\dfrac{7 - \sqrt{3}}{7 + \sqrt{3}}}

\mathrm{Multiply\;and\;Divide\;with\;\sqrt{7} - \sqrt{3}}

\mathrm{\longrightarrow\dfrac{(7 - \sqrt{3})(7 - \sqrt{3})}{(7 - \sqrt{3})(7 + \sqrt{3})}}

\mathrm{\longrightarrow\dfrac{(7 - \sqrt{3})^2}{(7)^2 - (\sqrt{3})^2}}

\mathrm{\longrightarrow\dfrac{(7)^2 + (\sqrt{3})^2 - 2(7)(\sqrt{3})}{49 - 3}}

\mathrm{\longrightarrow\dfrac{49 + 3 - 14\sqrt{3}}{46}}

\mathrm{\longrightarrow\dfrac{52 - 14\sqrt{3}}{46}}

\mathrm{Question :\;\dfrac{7 + \sqrt{3}}{7 - \sqrt{3}} + \dfrac{7 - \sqrt{3}}{7 + \sqrt{3}}}

\mathrm{\longrightarrow\dfrac{52 + 14\sqrt{3}}{46} + \dfrac{52 - 14\sqrt{3}}{46}}

\mathrm{\longrightarrow\dfrac{52 + 14\sqrt{3} + 52 - 14\sqrt{3}}{46}}

\mathrm{\longrightarrow\dfrac{104}{46}}

\mathrm{\longrightarrow\dfrac{52}{23}}

Answered by rahman786khalilu
1

hope it helps

mark as brainliest

Attachments:
Similar questions