Math, asked by timon4846, 11 months ago

Please help me with this math​

Attachments:

Answers

Answered by BrainlyPopularman
1

Answer:

GIVES THAT :

a + b =  \sqrt{3}  \:  \: and \:  \: a - b =  \sqrt{2}

TO FIND :

Value of ab( a² + b² )

=BY GIVEN EQUATION

a =  \frac{ \sqrt{3}  +  \sqrt{2} }{2}  \:  \: and \:  \: b =  \frac{ \sqrt{3}  -  \sqrt{2} }{2}

  • ab = 1/4
  • a² + b² = 10/4

SO THAT

ab( {a}^{2}  +  {b}^{2} ) =  \frac{1}{4} ( \frac{10}{4} ) =  \frac{5}{8}

#FOLLOW ME...

Answered by Anonymous
10

{\purple{\underline{\underline{\large{\mathtt{ANSWER:-}}}}}}

Value of ab(a²+b²) is 5/8.

{\purple{\underline{\underline{\large{\mathtt{EXPLANATION:-}}}}}}

Given:-

  • a+b = √3
  • a-b = √2

To find:-

  • Value of ab(a²+b²).

Solution:-

Taking a+b = √3

† Squaring in both sides,†

→(a+b)² = (√3)²

→(a-b)² +4ab = 3

† Putting the value of a-b=√2

→(√2)² +4ab = 3

→2 + 4ab = 3

→4ab = 1

→ ab =1/4

★ Now find the value of ab(a²+b²)

ab(a²+b²)

= ab (a+b)²-2ab

Putting all values

= 1/4(√3)²-2×1/4

=5/8

Similar questions