Please help to find the solution for this question
Attachments:
nemo29:
yuii
Answers
Answered by
1
hey there,
(tanA+secA-1)/(tanA-secA+1)=(1+sinA)/cos A
multiply LHS by cosA /cosA to get
(sinA+1-cosA) / (sinA-1+cosA)
multiply again by cosA/cosA to get
(sinA.cosA+cosA-cos^2A) / cosA(sinA-1+cosA)
= ( cosA(1+sinA) - (1-sin^2A) ) / cosA(sinA-1+cosA)
= ( cosA(1+sinA) - (1+sinA)(1-sinA) ) / cosA(sinA-1+cosA)
= ( (1+sinA)(cosA-1+sinA) ) / cosA(sinA-1+cosA)
= (1+sinA)/cosA
L.H.S = R.H.S
hence proved .
hope it helps you
follow me @famitha
(tanA+secA-1)/(tanA-secA+1)=(1+sinA)/cos A
multiply LHS by cosA /cosA to get
(sinA+1-cosA) / (sinA-1+cosA)
multiply again by cosA/cosA to get
(sinA.cosA+cosA-cos^2A) / cosA(sinA-1+cosA)
= ( cosA(1+sinA) - (1-sin^2A) ) / cosA(sinA-1+cosA)
= ( cosA(1+sinA) - (1+sinA)(1-sinA) ) / cosA(sinA-1+cosA)
= ( (1+sinA)(cosA-1+sinA) ) / cosA(sinA-1+cosA)
= (1+sinA)/cosA
L.H.S = R.H.S
hence proved .
hope it helps you
follow me @famitha
Similar questions