Math, asked by sarojatavva, 11 months ago

please help with the answer.​

Attachments:

Answers

Answered by pradnya1600
0

Answer:

tan0+ sec0=l

tan0=l-sec0......a

now

sec0=l-tan0

sec0= l-(l-sec0)

sec0=l-l+sec0

sec0=sec0

Answered by pmvjs299
1

Answer:

sec\theta = \frac{l^{2} + 1}{2l}

Step-by-step explanation:

given:

tanθ + secθ = l

now take square on both sides,

( tanθ + secθ )^2 = l^{2}

tan^{2} \theta + sec^{2}\theta+2tan\theta sec\theta = l^{2}

we know that,

sec^{2}\theta - tan^{2}\theta = 1    ⇒ tan^{2}\theta = sec^{2}\theta -1

so,

tan^{2} \theta + sec^{2}\theta+2tan\theta sec\theta = l^{2}     ⇒    sec^{2}\theta - 1 + sec^{2}\theta + 2 tan\theta sec\theta = l^{2}

 ⇒   2 sec^{2}\theta+2 tan\theta sec\theta - 1 = l^{2}

⇒  2sec\theta( sec\theta + tan\theta) - 1 = l^{2}

2sec\theta( l ) - 1 =l^{2}              since   tanθ + secθ = l

l^{2} - 2sec\theta l + 1 = 0

 ⇒ 2sec\theta l =l^{2} + 1

sec\theta = \frac{l^{2} + 1}{2l}

thus you got the answer !

Similar questions