please help with this question
Answers
Given:-
☆Value of 4x-5z=16
☆Value of xz=12
To find:-
☆Value of 64x³-125z³
Solution:-
By cubing both sides in the equation,4x-5z=16,we get:-
=>(4x-5z)³=(16)³
We know that,(a-b)³=a³-b³-3ab(a-b)
=>(4x)³-(5z)³-3×4x×5z(4x-5z)=4096
=>64x³-125z³-60xz(16)=4096
=>64x³-125z³-60×12×16=4096
=>64x³-125z³-11520=4096
=>64x³-125z³=4096+11520
=>64x³-125z³=15616
Thus,value of 64x³-125z³ is 15616.
Extra Information:-
☆Some of the important algebraic identities used in this type of problems are:-
•(a+b)²=a²+b²+2ab
•(a-b)²=a²+b²-2ab
•a²-b²=(a+b)(a-b)
•(a+b)³=a³+b³+3ab(a+b)
•(a-b)³=a³-b³-3ab(a-b)
•a³+b³=(a+b)(a²+b²-ab)
•a³-b³=(a-b)(a²+b²+ab)
Answer:
Given - 4x - 5z = 16
- xy = 12
To find -
4x - 5z = 16
(4x- 5z)^2 = 16^2
16x^2 + 25z^2 - 40xy = 256
16x^2 + 25z ^2 - 40 × 12 = 256
16x^2 + 25z^2 - 480 = 256
16x^2 + 25z^2 = 256+ 480
16x^2 + 25z^2 = 736
4( 4x^2 + 5z^2)= 756
4x^2 + 5z^2 = 756 × 4
4x^2 + 5z^2 = 3024
64x^3 - 125z^3
( 4x)^3 - (5z)^3
using identity a^3 - b^3 = (a - b)(a^2 + ab + b^2).
( 4x - 5z) ( 4x^2 + 4x × 5z + 5z^2)
( 16 ) ( 4x^2 + 5z^2 + 20xy)
(16) ( 3024 + 20× 12)
16 ( 3024 + 240)
16 ( 32 64)
52,224