Physics, asked by Chahak03, 7 months ago

Please help with this question as soon as possible.​

Attachments:

Answers

Answered by Anonymous
3

Answer:

 \boxed{\mathfrak{(1) \ \dfrac{2F_0}{tan\alpha}}}

Explanation:

Here force given is variable.

Hence, we apply method of integration for getting desired result.

Equation of force is in the form of y = mx + c

 \sf m = -tan \alpha  \\  \sf c = F_0

\rm \implies F = -tan\alpha \:  x + F_0

 \sf F = ma \\  \\  \sf\sf F = m \frac{dv}{dt}  \times  \frac{dx}{dx}  \\  \\ \sf F = m \frac{dx}{dt} . \frac{dv}{dx}  \\  \\ \sf F = mv \frac{dv}{dx}

\rm \implies mv. \dfrac{dv}{dx}  = -tan\alpha \:  x + F_0

Initial and final velocity both are zero and 'x' is final position of object when it comes to rest again.

So,

\rm \implies \int\limits^0_0mv.dv = \int\limits^x_0(-tan\alpha \:  x + F_0).dx \\  \\ \rm \implies 0 =    ( - tan \alpha  \dfrac{ {x}^{2} }{2}  + F_0x)\Big| _0^x \\  \\ \rm \implies     F_0x   - tan \alpha  \dfrac{ {x}^{2} }{2}= 0 \\  \\ \rm \implies   x(  F_0   - tan \alpha  \dfrac{ x }{2})= 0 \\  \\  \\  \\ \rm \implies   x = 0 \:  \:  \:  \: or \:  \:  \:  \: F_0   - tan \alpha  \dfrac{ x }{2} = 0 \\  \\  \rm \implies  tan \alpha  \dfrac{ x }{2} = F_0\\  \\  \rm \implies x =  \dfrac{2F_0}{tan \alpha }

 \therefore Position of object where it again comes to rest =  \rm \dfrac{2F_0}{tan \alpha }

Similar questions