Please i am a new member... i want to find i when (1+i)^2 = 1.44 . I need steps
Answers
mark as brainlist
Solution using a² - b² = (a + b) (a - b) identity :
Given that, (1 + i)² = 1.44
⇒ (1 + i)² - 1.44 = 0
⇒ (1 + i)² - 1.2² = 0
⇒ (1 + i + 1.2) (1 + i - 1.2) = 0
⇒ (i + 2.2) (i - 0.2) = 0
Either i + 2.2 = 0 or, i - 0.2 = 0
⇒ i = - 2.2 , 0.2 ,
which is the required solution.
Solution by taking squared root :
Given that, (1 + i)² = 1.44
⇒ 1 + i = ± √1.44
⇒ 1 + i = ± 1.2
Then, 1 + i = 1.2 and 1 + i = - 1.2
⇒ i = 0.2 , - 2.2 ,
which is the required solution.
Solution using middle term method :
Given that, (1 + i)² = 1.44
⇒ 1² + 2i + i² - 1.44 = 0
⇒ i² + 2i - 0.44 = 0
⇒ i² + 2.2i - 0.2i - 0.44 = 0
⇒ i (i + 2.2) - 0.2 (i + 2.2) = 0
⇒ (i + 2.2) (i - 0.2) = 0
Either i + 2.2 = 0 or, i - 0.2 = 0
⇒ i = - 2.2 , 0.2 ,
which is the required solution.
Identities :
(a + b)² = a² + 2ab + b²
a² - b² = (a + b) (a - b)