Math, asked by yuviman25, 1 year ago

please important i want to know the answer​

Attachments:

Answers

Answered by YameshPant
0

Step-by-step explanation:

since \:  abc =1 \\ c =  \frac{1}{ab} \\ now \:  \frac{1}{1 + a +  {b}^{ - 1} }  =  \frac{1}{1 + a +  \frac{1}{b } } \\  =  \frac{1}{ \frac{b + a + 1}{b} } \\  =  \frac{b}{b + a + 1}

similarly

 \frac{1}{1 + b +  {c}^{ - 1} }  =  \frac{c}{c + bc + 1} \\  =  \frac{ \frac{1}{ab} }{ \frac{1}{ab} + b ( \frac{1}{ab} )+ 1 }  \\  =  \frac{ \frac{1}{ab} }{ \frac{1 + b + ab}{ab} } \\  =  \frac{1}{1 + ab + b}

and

 \frac{1}{1 + c +  {a}^{ - 1} }  =  \frac{a}{a + ac + 1}  \\  =  \frac{a}{a + a( \frac{1}{ab} ) + 1}  \\  =  \frac{a}{ \frac{ab + 1 + b}{b} }  \\  =  \frac{ab}{1 + ab + b}

now

 \frac{1}{1 + a +  {b}^{ - 1} }  + \frac{1}{1 + b +  {c}^{ - 1} }  + \frac{1}{1 + c+  {a}^{ - 1} }    \\  =\frac{b}{b + ab + 1}  +  \frac{1}{1 + ab + b}  +  \frac{ab}{1 + ab + b} \\   =  \frac{1 + ab + b}{1 + ab + b}  \\  = 1 \\  \\ hence \: proved

Similar questions