please integrate this..
Attachments:
Answers
Answered by
1
let √(2x +3) = z
take square both sides
2x + 3 = z² .dz
differentiate
2dx = 2zdz
dx = zdz
now,
√x/√(2x +3)dx = √x/z (zdz)
=√x .dz
according to above ,
√(2x +3) = z
2x +3 = z²
2x = z² -3
x =(z²-3)/2
√x = 1/√2{√(z²-3) put this
then ,
1/√2{√(z²-3)dz }
=1/√2{ √(z²-√3²)dz}
use basic formula,
=1/√2{ z/2√(z²-3) -3/2ln(z+√z²-3)) + C
put z = √(2x +3)
=(1/2√2)(√(2x +3)) -3/2√2ln{√(2x +3)+√(2x)}
take square both sides
2x + 3 = z² .dz
differentiate
2dx = 2zdz
dx = zdz
now,
√x/√(2x +3)dx = √x/z (zdz)
=√x .dz
according to above ,
√(2x +3) = z
2x +3 = z²
2x = z² -3
x =(z²-3)/2
√x = 1/√2{√(z²-3) put this
then ,
1/√2{√(z²-3)dz }
=1/√2{ √(z²-√3²)dz}
use basic formula,
=1/√2{ z/2√(z²-3) -3/2ln(z+√z²-3)) + C
put z = √(2x +3)
=(1/2√2)(√(2x +3)) -3/2√2ln{√(2x +3)+√(2x)}
sakshams:
you are the best but can you please elaborate what basic rules you performed
Answered by
101
♣ Qᴜᴇꜱᴛɪᴏɴ :
♣ ᴀɴꜱᴡᴇʀ :
♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :
______________________________
______________________________
______________________________
______________________________
Similar questions