Math, asked by silentloffer, 3 months ago

please.......... jaldi...​

Attachments:

Answers

Answered by Sanumarzi21
5

Hey mate!

Here's your answer!!

Let the sum lent at 8% is x, then sum lent at 10% is (10000 - x)

x \times \frac{8}{100} \times 1 + (10000 - x) \times \frac{10}{100} \times 1x×

100

8

×1+(10000−x)×

100

10

×1

= 10000 \times \frac{92}{100} \times 1=10000×

100

92

×1

= \frac{8x}{100} + \frac{10(10000 - x}{100} = 920=

100

8x

+

100

10(10000−x

=920

8x + 100000 - 10x = 92000

➡ -2x + 100000 = 92000

➡ -2x = 92000 - 100000

➡ -2x = -8000

➡ x = 4000

Amount lent at 8% = ₹4000

Amount lent at 10% = (10000 - 4000) = ₹6000

hope \: it \: helps \: you.hopeithelpsyou.

✌ ✌

#BE BRAINLY

Answered by Anonymous
7

Answer:

Rs. 4000, Rs. 6000

Step-by-step explanation:

 \frac{total \: intrest \: \times  }{total \: sum} = average \: yearly \: interest

⇒ \: total \: intrest \:  =  \frac{9.2 \times 10000}{100}  = rs. \: 920

Let \: the \: sum \:  lent \: at \: 8\% \: p.a. \:  \\  be \: Rs. \: x. </p><p>

Then, \: the \: sum \: lent \:  at \: 10\% \\  p.a. \: is \: Rs. \: (10000−x)

∴ \:  \frac{x \times 8 \times 1}{100}  + (10000  - x) \times  \: 10  \times 1 = 920

⇒ \frac{8 \times }{100}  + 1000 -  \frac{10 \times }{100}  = 920

⇒ \frac{2 \times }{100}  = 80

⇒ \times  = 4000

Therefore, \: the \: two \: partsare \\  Rs. 4000 \: and \: Rs. \: 6000

Similar questions