please koi bahana mat do please ye bata do 1 last
a humble request
Answers
Sᴏʟᴜᴛɪᴏɴ :-
→ a = 3 + √8
→ 1/a = 1/(3 + √8)
→ 1/a = 1/(3 + √8) * (3 - √8) / (3 - √8)
→ 1/a = (3 - √8)/((3 + √8)(3 - √8)
→ 1/a = (3 - √8)/(3² - (√8)²)
→ 1/a = (3 - √8)/(9 - 8)
→ 1/a = (3 - √8)
So,
→ (a + 1/a) = 3 + √8 + 3 - √8 = 6 (Ans.)
_________________
Now,
→ (a + 1/a) = 6
Squaring both sides,
→ (a + 1/a)² = 6²
using (a + b)² = a² + b² + 2ab in LHS,
→ a² + 1/a² + 2 * a * 1/a = 36
→ a² + 1/a² + 2 = 36
→ (a² + 1/a²) = 36 - 2
→ (a² + 1/a²) = 34 (Ans.)
_________________
Now,
→ (a² + 1/a²) = 34
Squaring both sides,
→ (a² + 1/a²)² = 34²
using (a + b)² = a² + b² + 2ab in LHS,
→ a⁴ + 1/a⁴ + 2 * a² * 1/a² = 1156
→ a⁴ + 1/a⁴ + 2 = 1156
→ (a⁴ + 1/a⁴) = 1156 - 2
→ (a⁴ + 1/a⁴) = 1154 (Ans.)
_________________
And, in Last,
→ (a + 1/a) = 6
cubing both sides, we get,
→ (a + 1/a)³ = 6³
using (a + b)³ = a³ + b³ + 3ab(a + b) in LHS, we get,
→ a³ + 1/a³ + 3 * a * 1/a(a + 1/a) = 216
→ a³ + 1/a³ + 3(a + 1/a) = 216
Putting value of (a + 1/a) = 6 Now,
→ a³ + 1/a³ + 3*6 = 216
→ a³ + 1/a³ + 18 = 216
→ (a³ + 1/a³) = 216 - 18
→ (a³ + 1/a³) = 198 (Ans.)
___________________________
▪ If
find
▪ it's given in the question that....
then,
▪ rationalizing the denominator...
multiplying 3-root 8 to both numerator and denominator....
▪ using the algebraic identity in the denominator....
thus,
▪ squaring both the sides....
▪ using. the algebraic identity given below in L.H.S....
▪ again squaring both the sides...
▪ using the above formula again in L.H.S ....
▪ cubing both the sides....
▪ now , using the given formula in L.H.S..
▪ putting the value of (a+1/a)=6, in the above equation...