Math, asked by deepthi2007, 1 month ago

please mark these answers fast friends
please friends​

Attachments:

Answers

Answered by Anonymous
31

Step-by-step explanation:

 \rm \: cosec \theta =  \sqrt{10}

 \rm \because \: sin \theta =  \frac{1}{ cosec \theta}

 \rm \therefore \: sin \theta =  \frac{1}{ \sqrt{10} }

  \rm \because \:  {cos}^{2}  \theta = 1 -  {sin}^{2}  \theta

 \rm \therefore \:  {cos}^{2}  \theta = 1 -  {( \frac{1}{ \sqrt{10} } )}^{2}

 \rm  {cos}^{2} \theta = 1 -  \frac{1}{10}

 \rm  {cos}^{2} \theta = \frac{10 - 1}{10}   \:  \:

 \rm  {cos}^{2} \theta = \frac{9}{10}

 \rm cos \theta =  \sqrt{ \frac{9}{10} }

 \rm cos \theta =  \frac{3}{ \sqrt{10} }

 \rm \because \:  \: sec \theta =  \frac{1}{cos \theta}

 \rm \therefore \: sec \theta =  \frac{1}{  \frac{3}{\sqrt{10}}  }

 \rm  \: sec \theta =  \frac{ \sqrt{10} }{3}

 \rm \because \:  \: tan \theta =  \frac{sin \theta}{cos \theta}

 \rm \therefore \:  \: tan \theta =  \frac{ \frac{1}{ \sqrt{10} } }{ \frac{3}{ \sqrt{10} } }

 \rm tan \theta =  \frac{1}{ \cancel{ \sqrt{10} }}  \times  \frac{\cancel{ \sqrt{10} } }{3}

 \rm tan \theta =   \frac{1}{3}

  \rm\because \:  \: cot \theta =  \frac{1}{ tan \theta}

 \rm\therefore \:  \: cot \theta =  \frac{1}{  \frac{1}{3} }

 \rm cot \theta =  3

Answered by Anonymous
28

Step-by-step explanation:

 \rm \: cosec \theta =  \sqrt{10}

 \rm \because \: sin \theta =  \frac{1}{ cosec \theta}

 \rm \therefore \: sin \theta =  \frac{1}{ \sqrt{10} }

  \rm \because \:  {cos}^{2}  \theta = 1 -  {sin}^{2}  \theta

 \rm \therefore \:  {cos}^{2}  \theta = 1 -  {( \frac{1}{ \sqrt{10} } )}^{2}

 \rm  {cos}^{2} \theta = 1 -  \frac{1}{10}

 \rm  {cos}^{2} \theta = \frac{10 - 1}{10}   \:  \:

 \rm  {cos}^{2} \theta = \frac{9}{10}

 \rm cos \theta =  \sqrt{ \frac{9}{10} }

 \rm cos \theta =  \frac{3}{ \sqrt{10} }

 \rm \because \:  \: sec \theta =  \frac{1}{cos \theta}

 \rm \therefore \: sec \theta =  \frac{1}{  \frac{3}{\sqrt{10}}  }

 \rm  \: sec \theta =  \frac{ \sqrt{10} }{3}

 \rm \because \:  \: tan \theta =  \frac{sin \theta}{cos \theta}

 \rm \therefore \:  \: tan \theta =  \frac{ \frac{1}{ \sqrt{10} } }{ \frac{3}{ \sqrt{10} } }

 \rm tan \theta =  \frac{1}{ \cancel{ \sqrt{10} }}  \times  \frac{\cancel{ \sqrt{10} } }{3}

 \rm tan \theta =   \frac{1}{3}

  \rm\because \:  \: cot \theta =  \frac{1}{ tan \theta}

 \rm\therefore \:  \: cot \theta =  \frac{1}{  \frac{1}{3} }

 \rm cot \theta =  3

Answered by Anonymous
23

Step-by-step explanation:

 \rm \: cosec \theta =  \sqrt{10}

 \rm \because \: sin \theta =  \frac{1}{ cosec \theta}

 \rm \therefore \: sin \theta =  \frac{1}{ \sqrt{10} }

  \rm \because \:  {cos}^{2}  \theta = 1 -  {sin}^{2}  \theta

 \rm \therefore \:  {cos}^{2}  \theta = 1 -  {( \frac{1}{ \sqrt{10} } )}^{2}

 \rm  {cos}^{2} \theta = 1 -  \frac{1}{10}

 \rm  {cos}^{2} \theta = \frac{10 - 1}{10}   \:  \:

 \rm  {cos}^{2} \theta = \frac{9}{10}

 \rm cos \theta =  \sqrt{ \frac{9}{10} }

 \rm cos \theta =  \frac{3}{ \sqrt{10} }

 \rm \because \:  \: sec \theta =  \frac{1}{cos \theta}

 \rm \therefore \: sec \theta =  \frac{1}{  \frac{3}{\sqrt{10}}  }

 \rm  \: sec \theta =  \frac{ \sqrt{10} }{3}

 \rm \because \:  \: tan \theta =  \frac{sin \theta}{cos \theta}

 \rm \therefore \:  \: tan \theta =  \frac{ \frac{1}{ \sqrt{10} } }{ \frac{3}{ \sqrt{10} } }

 \rm tan \theta =  \frac{1}{ \cancel{ \sqrt{10} }}  \times  \frac{\cancel{ \sqrt{10} } }{3}

 \rm tan \theta =   \frac{1}{3}

  \rm\because \:  \: cot \theta =  \frac{1}{ tan \theta}

 \rm\therefore \:  \: cot \theta =  \frac{1}{  \frac{1}{3} }

 \rm cot \theta =  3

Answered by Anonymous
22

Step-by-step explanation:

 \rm \: cosec \theta =  \sqrt{10}

 \rm \because \: sin \theta =  \frac{1}{ cosec \theta}

 \rm \therefore \: sin \theta =  \frac{1}{ \sqrt{10} }

  \rm \because \:  {cos}^{2}  \theta = 1 -  {sin}^{2}  \theta

 \rm \therefore \:  {cos}^{2}  \theta = 1 -  {( \frac{1}{ \sqrt{10} } )}^{2}

 \rm  {cos}^{2} \theta = 1 -  \frac{1}{10}

 \rm  {cos}^{2} \theta = \frac{10 - 1}{10}   \:  \:

 \rm  {cos}^{2} \theta = \frac{9}{10}

 \rm cos \theta =  \sqrt{ \frac{9}{10} }

 \rm cos \theta =  \frac{3}{ \sqrt{10} }

 \rm \because \:  \: sec \theta =  \frac{1}{cos \theta}

 \rm \therefore \: sec \theta =  \frac{1}{  \frac{3}{\sqrt{10}}  }

 \rm  \: sec \theta =  \frac{ \sqrt{10} }{3}

 \rm \because \:  \: tan \theta =  \frac{sin \theta}{cos \theta}

 \rm \therefore \:  \: tan \theta =  \frac{ \frac{1}{ \sqrt{10} } }{ \frac{3}{ \sqrt{10} } }

 \rm tan \theta =  \frac{1}{ \cancel{ \sqrt{10} }}  \times  \frac{\cancel{ \sqrt{10} } }{3}

 \rm tan \theta =   \frac{1}{3}

  \rm\because \:  \: cot \theta =  \frac{1}{ tan \theta}

 \rm\therefore \:  \: cot \theta =  \frac{1}{  \frac{1}{3} }

 \rm cot \theta =  3

Answered by Anonymous
64

Step-by-step explanation:

 \rm \: cosec \theta =  \sqrt{10}

 \rm \because \: sin \theta =  \frac{1}{ cosec \theta}

 \rm \therefore \: sin \theta =  \frac{1}{ \sqrt{10} }

  \rm \because \:  {cos}^{2}  \theta = 1 -  {sin}^{2}  \theta

 \rm \therefore \:  {cos}^{2}  \theta = 1 -  {( \frac{1}{ \sqrt{10} } )}^{2}

 \rm  {cos}^{2} \theta = 1 -  \frac{1}{10}

 \rm  {cos}^{2} \theta = \frac{10 - 1}{10}   \:  \:

 \rm  {cos}^{2} \theta = \frac{9}{10}

 \rm cos \theta =  \sqrt{ \frac{9}{10} }

 \rm cos \theta =  \frac{3}{ \sqrt{10} }

 \rm \because \:  \: sec \theta =  \frac{1}{cos \theta}

 \rm \therefore \: sec \theta =  \frac{1}{  \frac{3}{\sqrt{10}}  }

 \rm  \: sec \theta =  \frac{ \sqrt{10} }{3}

 \rm \because \:  \: tan \theta =  \frac{sin \theta}{cos \theta}

 \rm \therefore \:  \: tan \theta =  \frac{ \frac{1}{ \sqrt{10} } }{ \frac{3}{ \sqrt{10} } }

 \rm tan \theta =  \frac{1}{ \cancel{ \sqrt{10} }}  \times  \frac{\cancel{ \sqrt{10} } }{3}

 \rm tan \theta =   \frac{1}{3}

  \rm\because \:  \: cot \theta =  \frac{1}{ tan \theta}

 \rm\therefore \:  \: cot \theta =  \frac{1}{  \frac{1}{3} }

 \rm cot \theta =  3

Similar questions