Math, asked by deepthi2007, 1 month ago

please mark these answers fast friends please friends​

Attachments:

Answers

Answered by ᏢerfectlyShine
4

Answer:

As we know that, sin(90°-θ) = cos θ by sine property. So, sin(45°+θ)-cos(45°-θ)  = sin[90°-(45°-θ)]-cos(45°-θ) = cos(45°-θ)-cos(45°-θ) (By using identity)

Answered by Anonymous
6

Step-by-step explanation:

 \rm tan30° =  \big( \frac{tan60° - tan30°}{1 + tan60°tan30°}  \big)

 \rm =  \frac{ \sqrt{3}  -  \frac{1}{ \sqrt{3} } }{1 +   \cancel{\sqrt{3}} \times   \frac{1}{ \cancel{ \sqrt{3} } }  } \:  \{ \because \: tan60 =  \sqrt{3}  \: and \: tan30 =  \frac{1}{ \sqrt{3} }  \}

 =  \frac{  \frac{({ \sqrt{3} })^{2}  - 1}{ \sqrt{3} } }{ 1 + 1 }

 =  \frac{ \frac{3 - 1}{ \sqrt{3} } }{2}

 =  \frac{ \frac{2}{ \sqrt{3} } }{2}

 =  \frac{ \cancel2}{ \sqrt{3} }  \times  \frac{1}{\cancel2}

 =  \frac{1}{ \sqrt{3} }

 =  \tan30° \:  \:  \{ \because \:  \frac{1}{ \sqrt{3} }  =  \tan30 ° \}

I hope it is helpful

Similar questions