please me....plz
∫(3+2x)^2dx
calculate the indefinite integral
Answers
Answer:
Step-by-step explanation:
We have to find the integration of,
After expanding the terms,
we get,
Now,
we know that,
So,
according to this,
we get
Integration
where, c is an arbitrary constant
Answer:
4x³
9x + ------ + 6x² + c
3
Step-by-step explanation:
To find----->
------------
∫(3+2x)²dx
Solution----->
--------------
∫(3+2x)²dx
we have an identity as follows
(a+b)²= a²+ b²+ 2ab ,applying it here
= ∫{(3)² + (2x)² + 2 (3) (2x)} dx
= ∫(9 + 4x² + 12x ) dx
= ∫9 dx + ∫4x² dx + ∫ 12x dx
x^(n+1)
we have a formula ∫xⁿdx=-------------- + c
(n+1)
applying it
= 9∫ 1 dx + 4 ∫ x² dx + 12∫ x¹ dx
x³ x²
= 9 x + 4 ------ + 12 ------- + c
3 2
4x³
=9x + ------- + 6x² + c
3
Additional formulee---->
---------------------------------
1
1:∫----- dx = log x +c
x
aˣ
2: ∫aˣ dx= ----------- + c
log a
e
3: ∫eˣ dx = eˣ + c
4: ∫sinx dx = -cosx + c
5: ∫cosx dx = sinx +c
6: ∫sec²x dx = tan x +c
7: ∫secx tanx dx =sec x + c
8: ∫cosec² x=- cot x + c
9: ∫ cosecx cotx =-cosecx + c