Math, asked by niranjandorage, 1 year ago

Please please 8 this one prove that

Attachments:

Answers

Answered by Anonymous
15
Q) \boxed{\sf{ \frac{1 + tan ^{2}(45\degree - A) }{1 - tan ^{2}(45\degree - A) } = cosec\:2A}}

\sf{\underline{LHS:}}

\sf{= \frac{1 + tan ^{2}(45\degree - A) }{1 - tan ^{2}(45\degree - A) }}

\sf{ = \frac{1}{cos2(45\degree - A)}}

\sf{\underline{Since:}} \boxed{\sf{ \frac{1 - {tan}^{2}A }{1 + {tan}^{2} A} = cos\:2A}}

\sf{= \frac{1}{cos(90\degree - 2A)}}

\sf{= \frac{1}{sin\:2A}}

\sf{ = cosec\:2A}

\sf{ = RHS}

Hence, Proved!

mohan185: In LHS how can you take direct step
Similar questions