Math, asked by RidhoChauhan1923, 10 months ago

please please please please please answer...​

Attachments:

Answers

Answered by BrainlyIAS
1

Answer:

I will solve ques no. 28

given  \frac{x}{a}  \ \cos(x)   +  \frac{y}{b}  \sin(x)  = m    \:  \:  \:  \: =  >  (1)\\ \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \frac{x}{a} \ \ \sin(x)  +  \frac{y}{b}  \ \cos(x)  = n \:  \:  \:  =  > (2)\\  \\ now \:  squaring \: the \: first \: eq \: we \: get \: \\   \\  {m}^{2}  =  \frac{x^{2} }{ {a}^{2} }   { \cos(x) }^{2}  + \frac{y^{2} }{ {b}^{2} }   { \ \sin(x)  }^{2} + 2. \frac{x}{a} . \frac{y}{b} . \sin(x)  \cos(x)  =  = \: > (3) \\   {n}^{2}  =  \frac{x^{2} }{ {a}^{2} }   { \ \sin (x) }^{2}  + \frac{y^{2} }{ {b}^{2} }   { \ \ \cos(x)  }^{2}  -  2. \frac{x}{a} . \frac{y}{b} . \sin(x)  \cos(x)  =  = \: > (4) \\  \\ now \: adding \: 3rd \: and \: 4th \: equations \: we \: \\  get ...... \\  {m}^{2}  +  {n}^{2}  = \frac{x^{2} }{ {a}^{2} }   { \cos(x) }^{2}  + \frac{y^{2} }{ {b}^{2} }   { \ \sin(x)  }^{2} + 2. \frac{x}{a} . \frac{y}{b} . \sin(x)  \cos(x) + \frac{x^{2} }{ {a}^{2} }   { \ \sin (x) }^{2}  + \frac{y^{2} }{ {b}^{2} }   { \ \ \cos(x)  }^{2}  - \:   2. \frac{x}{a} . \frac{y}{b} . \sin(x)  \cos(x)  \\ {m}^{2}  +  {n}^{2} =   \frac{x^{2} }{ {a}^{2} }  \: ({ \: \:  \sin( {x}^{2} ) +  \cos( {x}^{2} )  }) + \frac{y^{2} }{ {b}^{2} } \:  ({ \: \:  \sin( {x}^{2} ) +  \cos( {x}^{2} )  }) \:   \\ we \: know \: that \: math \: identity \: { \: \:  \sin( {x}^{2} ) +  \cos( {x}^{2} )  } \:  = 1\\   \: so \:  \: {m}^{2}  +  {n}^{2}  = \frac{x^{2} }{ {a}^{2} } +  \frac{y^{2} }{ {b}^{2} } \: \\ hence \: proved \:

Similar questions