Math, asked by bn04313, 10 months ago

please please tell me answer​

Attachments:

Answers

Answered by tusharraj77123
4

Answer:

Given:

\textsf{Length of one side of the equilateral triangle:}

=8\frac{1}{2}cm

\textsf{Total sides of the equilateral triangle:}

=\:3\:sides

To find:

\textsf{To find the 1/4 th part of the perimeter of the}\textsf{equilateral triangle. }

Concept:

Each side of the equilateral triangle is same .

To find the 1/4 th part first find the perimeter of the equilateral triangle.

Then , find the 1/4 th part of the perimeter of the equilateral triangle by dividing the perimeter to 1/4 th .

Taken:

To find the perimeter:

P=S×3

Where,

P = Perimeter of the equilateral triangle

S = Length of one side of the equilateral triangle

Solution:

Perimeter:

Taken,P=S×3

\mapsto{P=8\frac{1}{2}×3}

\mapsto{P=\frac{17}{2}×3}

\mapsto{P=\frac{51}{2}cm}

Now , find the 1/4 th part of the perimeter:

Taken,\frac{51}{2}÷\frac{1}{4}

\mapsto{\frac{51}{2}÷\frac{1}{4}}

\mapsto{\frac{51}{2}×\frac{4}{1}}

\mapsto{102cm}

Answer:

\textsf{So , the 1/4 th part of the equilateral triangle is}\textsf{102 cm}

Additional information:

To find the area of the triangle:

A=\frac{H×B}{2}

Where,

A = Area of the triangle

H = Height of the triangle

B = Base of the triangle

To find the perimeter of the square:

P=S×4

Where,

P = Perimeter of the square

S = One side of the square

To find the area of the square:

AS=S×S

Where,

AS = Area of the square

S = One side of the square

Attachments:
Answered by Anonymous
5

Given:</p><p></p><p>\textsf{Length of one side of the equilateral triangle:}Length of one side of the equilateral triangle:</p><p></p><p>=8\frac{1}{2}cm=821cm</p><p></p><p>\textsf{Total sides of the equilateral triangle:}Total sides of the equilateral triangle:</p><p></p><p>=\:3\:sides=3sides</p><p></p><p>• To find:</p><p></p><p>\textsf{To find the 1/4 th part of the perimeter of the}To find the 1/4 th part of the perimeter of the \textsf{equilateral triangle. }equilateral triangle. </p><p></p><p>• Concept:</p><p></p><p>Each side of the equilateral triangle is same .</p><p></p><p>To find the 1/4 th part first find the perimeter of the equilateral triangle.</p><p></p><p>Then , find the 1/4 th part of the perimeter of the equilateral triangle by dividing the perimeter to 1/4 th .</p><p></p><p>• Taken:</p><p></p><p>To find the perimeter:</p><p></p><p>P=S×3P=S×3</p><p></p><p>Where,</p><p></p><p>P = Perimeter of the equilateral triangle</p><p></p><p>S = Length of one side of the equilateral triangle</p><p></p><p>• Solution:</p><p></p><p>Perimeter:</p><p></p><p>Taken,P=S×3Taken,P=S×3</p><p></p><p>\mapsto{P=8\frac{1}{2}×3}↦P=821×3</p><p></p><p>\mapsto{P=\frac{17}{2}×3}↦P=217×3</p><p></p><p>\mapsto{P=\frac{51}{2}cm}↦P=251cm</p><p></p><p>Now , find the 1/4 th part of the perimeter:</p><p></p><p>Taken,\frac{51}{2}÷\frac{1}{4}Taken,251÷41</p><p></p><p>\mapsto{\frac{51}{2}÷\frac{1}{4}}↦251÷41</p><p></p><p>\mapsto{\frac{51}{2}×\frac{4}{1}}↦251×14</p><p></p><p>\mapsto{102cm}↦102cm</p><p></p><p>• Answer:</p><p></p><p>\textsf{So , the 1/4 th part of the equilateral triangle is}So , the 1/4 th part of the equilateral triangle is \textsf{102 cm}102 cm</p><p></p><p>• Additional information:</p><p></p><p>To find the area of the triangle:</p><p></p><p>A=\frac{H×B}{2}A=2H×B</p><p></p><p>Where,</p><p></p><p>A = Area of the triangle</p><p></p><p>H = Height of the triangle</p><p></p><p>B = Base of the triangle</p><p></p><p>To find the perimeter of the square:</p><p></p><p>P=S×4P=S×4</p><p></p><p>Where,</p><p></p><p>P = Perimeter of the square</p><p></p><p>S = One side of the square</p><p></p><p>To find the area of the square:</p><p></p><p>AS=S×SAS=S×S</p><p></p><p>Where,</p><p></p><p>AS = Area of the square</p><p></p><p>S = One side of the square</p><p></p><p>

Similar questions