please proof the formula
as soon as possible i need full proof
Answers
Answered by
2
Hey mate, Let me prove the formula.
(I have also provided it in my notebook as an attachment.)
a³+b³+c³-3abc
a³+b³+c³-3abc= (a+b+c)(a²+b²+c²-ab-bc-ca)
Step-by-step explanation:
LHS = a³+b³+c³-3abc
= (a³+b³)+c³-3abc
= (a+b)³-3ab(a+b)+c³-3abc
/* By algebraic identity:
x³+y³+3xy(x+y)=(x+y)³
=> x³+y³ = (x+y)³-3xy(x+y) */
= [(a+b)³+c³]-3ab(a+b)-3abc
=[(a+b+c)³-3(a+b)c(a+b+c)]-3ab(a+b+c)
=(a+b+c)[(a+b+c)²-3(a+b)c-3ab]
=(a+b+c)[a²+b²+c²+2ab+2bc+2ca-3ac-3bc-3ab]
=(a+b+c)(a²+b²+c²-ab-bc-ca)
= RHS
Therefore,
a³+b³+c³-3abc
= (a+b+c)(a²+b²+c²-ab-bc-ca)
HOPE YOU ARE REALLY HELPED MATE,PLEASE CONSIDER MARKING THIS ANSWER AS BRAINLIEST.....
Similar questions