Math, asked by nag90, 1 year ago

prove that cos 3 X is equals to cos 4 cube x minus 3 cos x​

Answers

Answered by Anonymous
2

Answer:

4 { \cos }^{3} x - 3 \cos(x)  \\  \\  = cosx \: (4 \:  { \cos }^{2} x - 3) \\  \\  = cosx ({ \cos }^{2} x + 3( { \cos }^{2} x - 1) \\  \\  \\  =  \cos(x) ( { \cos }^{2}x \:   -  3 { \sin }^{2}  x) \\  \\  =  \cos(x)( { \cos }^{2} x -  { \sin }^{2} x - 2 { \sin }^{2} x) \\  \\  = cos(x) ( \cos(2x)  - 2 + 2 { \cos }^{2} x) \\  \\  =  \cos(x)  \cos(2x)  - 2 \cos(x)  + 2 { \cos }^{3} x \\  \\  =  \frac{1}{2}  \times ( \cos(3x)  +  \cos(x) ) - 2 \cos(x)  + 2 { \cos }^{3} x \\  \\  =  \frac{ \cos(3x) }{2}  +  \frac{ \cos(x) }{2}  - 2 \cos(x)  + 2 { \cos }^{3} x \\  \\  =  \frac{ \cos(3x) }{2} \:  -  \frac{3 \cos(x) }{2}  + 2 { \cos }^{3} x \\  \\  =  \frac{ \cos3x }{2}  -  \frac{3 \cos(x)  + 4 { \cos }^{3}x }{2}   \\  \\  =  \frac{ \cos(3x) }{2}  +  \frac{ \cos(3x) }{2}  \\  \\  =  \cos(3x)  \: as \: proved

Similar questions