Math, asked by Jazza26, 1 year ago

please prove it with step by step explanation.

Attachments:

Answers

Answered by chhajedchirag1p32bb2
2
L.H.S
 \frac{1}{ \csc(x) -  \cot(x)  }  -  \frac{1}{ \sin(x) }  \\  \frac{1}{ \csc(x)   -  \cot(x) }  \times  \frac{ \csc(x) +  \cot(x)  }{ \csc(x) +  \cot(x)  }  -  \csc(x)  \\  \frac{ \csc(x) +  \cot(x)  }{ \csc(x) {}^{2}   -  \cot(x) {}^{2}  }  \\  \csc(x)  +  \cot(x)  -  \csc(x)  \\  \cot(x)
R.H.S
 \frac{1}{ \sin(x) }  - (  \frac{1}{ \csc(x)  +  \cot(x) }  \times  \frac{ \csc(x) -  \cot(x)  }{ \csc(x)  -  \cot(x) }  \\  \csc(x)  - ( \frac{ \csc(x)  -  \cot(x) }{ { \csc(x) }^{2} -  \cot(x)  {}^{2}  }  \\  \csc(x)  -  \csc(x)  +  \cot(x)  \\  \cot(x)
L.H.S=R.H.S.
hope this helps you:-))))
don't forget to do it brainleist.

chhajedchirag1p32bb2: please mark it as brainleist.
Jazza26: of course i will mark it brainliest once another solution arrives
chhajedchirag1p32bb2: OK
Jazza26: can you solve my other questions also please
chhajedchirag1p32bb2: which questions
Jazza26: i had asked other math questions also
Jazza26: differently
Similar questions