Math, asked by jailbreakerios10, 1 year ago

Please Prove L.H.S=R.H.S.(Give steps in detail)and please write and solve

Attachments:

Answers

Answered by devendra163gmailcom
1
if you like it then please mark it as brainlist pls pls pls pls pls pls pls...
Attachments:

jailbreakerios10: Good one ha,solved precisely
jailbreakerios10: Can I have u r number please for further doubts.
devendra163gmailcom: where did you find that option can you tell me
jailbreakerios10: It's beside votes.
devendra163gmailcom: now, where is this vote option
jailbreakerios10: But please give me your number or add me as your friend.
devendra163gmailcom: i have already aded you
jailbreakerios10: and number
devendra163gmailcom: sorry, dude i have non calling and recieving tab
jailbreakerios10: Ok
Answered by Anonymous
1
HEY buddy.....!! here is ur answer

We \: have \: to \: prove \: that \: : \tan\alpha - \cot\alpha = \frac{2 { \sin }^{2} \alpha - 1 }{ \sin \alpha \cos\alpha } \\ \\ On \: taking \: R.H.S. : \\ \\ = > \frac{2 { \sin }^{ 2} \alpha - 1}{ \sin \alpha \cos \alpha } = - \frac{1 - 2 { \sin }^{2} \alpha }{ \sin \alpha \cos \alpha} \\ \\ = > - \frac{1 - { \sin }^{2} \alpha - { \sin }^{2} \alpha }{ \sin\alpha \cos\alpha } \\ \\ = > - \frac{ { \cos }^{2} \alpha - { \sin }^{2} \alpha }{ \sin\alpha \cos \alpha } \\ \\ As \: we \: know \: that \: : { \sin }^{2} \alpha + { \cos}^{2} \alpha = 1 = > 1 - { \sin}^{2} \alpha = { \cos}^{2} \alpha \\ \\ = > \frac{ { \sin }^{2} \alpha - { \cos }^{2} \alpha }{ \sin \alpha \cos \alpha } \\ \\ = > \frac{ { \sin}^{2} \alpha }{ \sin \alpha \cos \alpha } - \frac{ { \cos }^{2} \alpha }{ \sin\alpha \cos\alpha} \\ \\ = > \frac{ \sin \alpha }{ \cos \alpha } - \frac{ \cos \alpha }{ \sin \alpha } \\ \\ = > \tan \alpha - \cot\alpha = L.H.S. HENCE  PROVED... \\ \\ As \: we \: know \: that \: \frac{ \sin \alpha }{ \cos \alpha } = \tan\alpha \: and \: \frac{ \cos\alpha}{ \sin \alpha } = \cot\alpha

I hope it will be helpful for you...!!

THANK YOU ✌️✌️

MARK IT AS BRAINLIEST
Similar questions