please prove the attached question
Answers
your answer is here.
i). (AB+BC+CD+DA) > (AC+BD)
sum of the two sides of a triangle is greater than the third side.
therefore,
in triangle.. ABC,
AB+BC > AC ..........(i)
in triangle.. BCD,
BC+CD > BD ..........(ii)
in triangle.. CDA,
CD+DA > AC ..........(iii)
in triangle.. DAB,
DA+AB > BD ..........(iv)
adding (i), (ii), (iii), (iv), we get ,,,
2AB+2BC+2CD+2DA > 2AC+2BD....
2(AB+BC+CD+DA) > 2(AC+BD).....
(AB+BC+CD+DA) > (AC+BD)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
ii). (AB+BC+CD+DA) < 2(AC+BD)
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side
Therefore,
In Δ AOB, AB < OA + OB ……….(i)
In Δ BOC, BC < OB + OC ……….(ii)
In Δ COD, CD < OC + OD ……….(iii)
In Δ AOD, DA < OD + OA ……….(iv)
⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD
⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO + OB)]
⇒ AB + BC + CD + DA < 2(AC + BD)
Hence, it is prove proved.
i hope it helps you..
make as brilliant...
thank you..!!