Math, asked by SamyekShakya, 11 months ago

Please prove the following compound identity
1/tanA -1/tan2A =cosec 2A

Answers

Answered by jitumahi435
4

\dfrac{1}{\tan A } -\dfrac{1}{\tan 2A } =\csc 2A, proved.

Step-by-step explanation:

To prove the compound identity:

\dfrac{1}{\tan A } -\dfrac{1}{\tan 2A } =\csc 2A

L.H.S. = \dfrac{1}{\tan A } -\dfrac{1}{\tan 2A }

Using the trigonometric identity,

\tan 2A = \dfrac{2\tan A}{1-\tan^2 A}

= \dfrac{1}{\tan A } -\dfrac{1}{\dfrac{2\tan A}{1-\tan^2 A}}

=\dfrac{1}{\tan A } -\dfrac{1-\tan^2 A}{2\tan A}

Taking LCM of denominator part, we get

=\dfrac{2-1+\tan^2 A}{2\tan A}

=\dfrac{1+\tan^2 A}{2\tan A}

=\dfrac{1}{\dfrac{2\tan A}{1+\tan^2 A} }

Using the trigonometric identity,

\sin 2A=\dfrac{2\tan A}{1+\tan^2 A}

=\dfrac{1}{\sin 2A}

= \csc 2A

= R.H.S., proved.

\dfrac{1}{\tan A } -\dfrac{1}{\tan 2A } =\csc 2A, proved.

Answered by Anonymous
0

Step-by-step explanation:

tanA

1

tan2A

1

=csc2A , proved.

Step-by-step explanation:

To prove the compound identity:

\dfrac{1}{\tan A } -\dfrac{1}{\tan 2A } =\csc 2A

tanA

1

tan2A

1

=csc2A

L.H.S. = \dfrac{1}{\tan A } -\dfrac{1}{\tan 2A }

tanA

1

tan2A

1

Using the trigonometric identity,

\tan 2A = \dfrac{2\tan A}{1-\tan^2 A}tan2A=

1−tan

2

A

2tanA

= \dfrac{1}{\tan A } -\dfrac{1}{\dfrac{2\tan A}{1-\tan^2 A}}

tanA

1

1−tan

2

A

2tanA

1

=\dfrac{1}{\tan A } -\dfrac{1-\tan^2 A}{2\tan A}=

tanA

1

2tanA

1−tan

2

A

Taking LCM of denominator part, we get

=\dfrac{2-1+\tan^2 A}{2\tan A}=

2tanA

2−1+tan

2

A

=\dfrac{1+\tan^2 A}{2\tan A}=

2tanA

1+tan

2

A

=\dfrac{1}{\dfrac{2\tan A}{1+\tan^2 A} }=

1+tan

2

A

2tanA

1

Using the trigonometric identity,

\sin 2A=\dfrac{2\tan A}{1+\tan^2 A}sin2A=

1+tan

2

A

2tanA

=\dfrac{1}{\sin 2A}=

sin2A

1

= \csc 2Acsc2A

= R.H.S., proved.

∴ \dfrac{1}{\tan A } -\dfrac{1}{\tan 2A } =\csc 2A

tanA

1

tan2A

1

=csc2A , proved

Similar questions