Please prove the following compound identity
1/tanA -1/tan2A =cosec 2A
Answers
, proved.
Step-by-step explanation:
To prove the compound identity:
L.H.S. =
Using the trigonometric identity,
=
Taking LCM of denominator part, we get
Using the trigonometric identity,
=
= R.H.S., proved.
∴ , proved.
Step-by-step explanation:
tanA
1
−
tan2A
1
=csc2A , proved.
Step-by-step explanation:
To prove the compound identity:
\dfrac{1}{\tan A } -\dfrac{1}{\tan 2A } =\csc 2A
tanA
1
−
tan2A
1
=csc2A
L.H.S. = \dfrac{1}{\tan A } -\dfrac{1}{\tan 2A }
tanA
1
−
tan2A
1
Using the trigonometric identity,
\tan 2A = \dfrac{2\tan A}{1-\tan^2 A}tan2A=
1−tan
2
A
2tanA
= \dfrac{1}{\tan A } -\dfrac{1}{\dfrac{2\tan A}{1-\tan^2 A}}
tanA
1
−
1−tan
2
A
2tanA
1
=\dfrac{1}{\tan A } -\dfrac{1-\tan^2 A}{2\tan A}=
tanA
1
−
2tanA
1−tan
2
A
Taking LCM of denominator part, we get
=\dfrac{2-1+\tan^2 A}{2\tan A}=
2tanA
2−1+tan
2
A
=\dfrac{1+\tan^2 A}{2\tan A}=
2tanA
1+tan
2
A
=\dfrac{1}{\dfrac{2\tan A}{1+\tan^2 A} }=
1+tan
2
A
2tanA
1
Using the trigonometric identity,
\sin 2A=\dfrac{2\tan A}{1+\tan^2 A}sin2A=
1+tan
2
A
2tanA
=\dfrac{1}{\sin 2A}=
sin2A
1
= \csc 2Acsc2A
= R.H.S., proved.
∴ \dfrac{1}{\tan A } -\dfrac{1}{\tan 2A } =\csc 2A
tanA
1
−
tan2A
1
=csc2A , proved