Math, asked by harsh1128, 1 year ago

please prove this determinant question:-

Attachments:

Answers

Answered by BrainlyWarrior
50
Hey there!

Solution:


\begin{vmatrix}a &b - c&c - b \\  a - c&b&c - a \\ a - b&b - a&c \end{vmatrix} = ( \: a \:  +  \: b  \:  -   \: c \: ) \: ( \: b \:  + \:  c  \: -  \: a) \: (c \:  + \:  a \:  -  \: b \: )


Taking L.H.S


 = \begin{vmatrix}a &b - c&c - b \\  a - c&b&c - a \\ a - b&b - a&c \end{vmatrix}



Applying C_{1} => C_{1} + C_{2} + C_{3}



 = \begin{vmatrix}a &b - c &c - b \\  b &b&c - a \\ c&b - a&c \end{vmatrix}



Applying R_{1} => R_{1} + R_{2} - R_{3}


 = \begin{vmatrix}a + b - c &a + b - c& - (a + b - c)\\  b&b&c - a \\ c &b - a&c \end{vmatrix}


Taking ( a + b - c ) common from R_{1}


 =   \: (a + b - c)\begin{vmatrix}1 &1&  - 1 \\  b&b&c - a \\ c&b - a&c \end{vmatrix}



Applying C_{1} => C_{1} - C_{2}


 =   \: (a + b - c)\begin{vmatrix}0 &1&  - 1 \\  0&b&c - a \\ a - b + c&b - a&c \end{vmatrix}


Taking ( a - b + c ) common from C_{1}


 =   \: (a + b - c)(a - b + c)\begin{vmatrix}0 &1&  - 1 \\  0&b&c - a \\ 1&b - a&c \end{vmatrix}


Expanding by C_{1}


∆ = ( a + b - c ) ( a - b + c ) [ 1 ( c - a + b ) ]


∆ = ( a + b - c ) ( a - b + c ) ( c - a + b )


L.H.S = R.H.S


Hence Proved.




#TogetherWeGoFar.
Similar questions