Math, asked by divergent07, 1 year ago

please provide solution

no spamming

Attachments:

Answers

Answered by amritstar
2
solution:

By using Pythagoras theorem we can calculate the distance between OA.

Here,
In ∆EFO ,

 {eo}^{2} = {ef}^{2} + {fo}^{2} \\ = > eo = \: \sqrt{ {ef}^{2} + {fo}^{2} }
Now, In ∆AEO,
 {ao}^{2} = {ae}^{2} + {eo}^{2} \\ {ao}^{2} = {ae}^{2} + { \sqrt{ {ef}^{2} + {fo}^{2} } }^{2} \\ = > {ao}^{2} = {ae}^{2} + {ef}^{2} + {fo}^{2} \\ = > ao = \sqrt{ {ae}^{2} + {ef}^{2} + {fo}^{2} }
___________________
Amrit
Answered by tiaverma
2

solution:

By using Pythagoras theorem we can calculate the distance between OA.

Here,

In ∆EFO ,

\begin{lgathered}{eo}^{2} = {ef}^{2} + {fo}^{2} \\ = > eo = \: \sqrt{ {ef}^{2} + {fo}^{2} }\end{lgathered}

eo

2

=ef

2

+fo

2

=>eo=

ef

2

+fo

2

Now, In ∆AEO,

\begin{lgathered}{ao}^{2} = {ae}^{2} + {eo}^{2} \\ {ao}^{2} = {ae}^{2} + { \sqrt{ {ef}^{2} + {fo}^{2} } }^{2} \\ = > {ao}^{2} = {ae}^{2} + {ef}^{2} + {fo}^{2} \\ = > ao = \sqrt{ {ae}^{2} + {ef}^{2} + {fo}^{2} }\end{lgathered}

ao

2

=ae

2

+eo

2

ao

2

=ae

2

+

ef

2

+fo

2

2

=>ao

2

=ae

2

+ef

2

+fo

2

=>ao=

ae

2

+ef

2

+fo

2

___________________

Amrit

please mark as brain list

Similar questions