please provide the solution for this question asap
Attachments:
Answers
Answered by
3
Answer--->
( 1 / 9 ) tan⁻¹ ( x³ - 2 ) / 3 + C
Step-by-step explanation:
To find---> ∫ x² dx / ( x⁶ - 4 x³ + 13 )
Solution---> Let,
I = ∫ x² dx / ( x⁶ - 4 x³ + 13 )
= ∫ x² dx / { ( x³ )² - 4 ( x³ ) + 13 }
Let , x³ = t
Differentiating with respect to x , we get,
=> 3 x² dx = dt
=> x² dx = dt / 3
Now,
I = ∫ dt / 3 ( t² - 4 t + 13 )
= ∫ dt / 3 { ( t² - 4t + 4 ) + 9 }
= ∫ dt / 3 { ( t - 2 )² + ( 3 )² }
We know that,
∫ dy /( y² + a² ) = 1 / a tan⁻¹ ( y / a ) + C , using it here , we get
= ( 1 / 3 ) ( 1 / 3 ) tan⁻¹ ( t - 2 ) / 3 + C
= ( 1 / 9 ) tan⁻¹ ( x³ - 2 ) / 3 + C
Similar questions