Math, asked by harshgupta1234, 1 year ago


Please reply me I am waiting ​

Attachments:

Answers

Answered by Brainly100
3

TO PROVE :-

 \frac{a + b + c}{ {a}^{ - 1} {b}^{ - 1} +  {b}^{ - 1} {c}^{ - 1} +  {c}^{ - 1}  {a}^{ - 1}  }  = abc

PROOF :-

LHS =

 \frac{a + b + c}{ {a}^{ - 1} {b}^{ - 1} +  {b}^{ - 1} {c}^{ - 1} +  {c}^{ - 1}  {a}^{ - 1}  }   \\  \\ \\   =  \frac{a + b + c}{ \frac{1}{a} \times  \frac{1}{b}  +  \frac{1}{b} \times  \frac{1}{c}  +  \frac{1}{c} \times  \frac{1}{a}}  \\  \\  \\  =  \frac{a + b + c}{ \frac{1}{ab} +  \frac{1}{bc}  +  \frac{1}{ca}  }  \\  \\  \\  =  \frac{a + b + c}{ \frac{c + a + b}{abc} }  \\  \\  \\  = (a + b + c ) \:  \div  \frac{a + b + c}{abc}  \\  \\  \\  = (a + b + c)  \:  \times  \frac{abc}{(a + b + c)}  \\  \\  \\  = abc

= RHS

Hence, we proved it.

LAWS USED :-

a^ -1 = 1/a

a/b ÷ c/d = a/b × d/c

Answered by kritiku2005
0

Step-by-step explanation:

a+b+c/1/ab+1/bc+1/ca= abc

a+b+c/c+a+b/abc=abc

a+b+c X abc/a+b+c  = abc

abc= abc  

Plz mark it the brainliest answer if it helps u


kritiku2005: Sorry for the mistake last time
Similar questions