Math, asked by daskamini455, 23 days ago

please say me the answer of this

please say correct answer .

l will mark as brainlist . ​

Attachments:

Answers

Answered by tennetiraj86
46

Answer:

given \: that \:  \\  \frac{ {243}^{0.13}  \times  {243}^{0.07} }{ {7}^{0.25} \times  {49}^{0.075}  \times  {343}^{0.2}  }  = ( { \frac{7}{3}) }^{2x}  \\ 243 \: can \: be \: written \: as \:   243 =  {3}^{5}  \\ 49 \:  =   {7}^{2}  \: and \: 343 \:  =  {7}^{3}  \\ \frac{ ({ {3}^{5}) }^{0.13}  \times  ({ {3}^{5}) }^{0.07} }{ {7}^{0.25} \times  ({ {7}^{2}) }^{0.075}  \times  ({ {7}^{3})}^{0.2}  }  = ( { \frac{7}{3}) }^{2x}  \\ we \: know \: that \:  \\  {a}^{m}  \times  {a}^{n}  =  {a}^{(m + n)}  \\  \: and \:  \:  \: ( { {a}^{m}) }^{n} \:  =  \:  {a}^{mn} \\ \\   \frac{ {3}^{(0.65 + 0.35)} }{ {7}^{(0.25 + 0.150 + 0.6)} }  =  \: ( { \frac{7}{3}) }^{2x}  \\  \\  \frac{ {3}^{1.00} }{ {7}^{1.0} }  \:  =  \: \: ( { \frac{7}{3}) }^{2x}  \\ \\  \frac{3}{7}  = \: \: ( { \frac{7}{3}) }^{2x}  \:  \\  ({ \frac{7}{3}) }^{ - 1}  \:  =  \: \: \: ( { \frac{7}{3}) }^{2x}   \\ since \:  {a}^{ - n}  =  \frac{1}{ {a}^{n} } \\ we \: know \: that \:  \\ if \: bases \: are \: equal \: then \: exponents \: must \: be \: equal \\  =  >  \:  - 1 \:  =  \: 2x \\  =  > x =   \frac{ - 1}{2}

Step-by-step explanation:

x = -1/2

Answered by powersurya850
23

SOLUTION :

  • PLEASE CHECK THE ATTACHED FILE
Attachments:
Similar questions