Math, asked by thopucherlarajita, 17 days ago

please send explanations and solutions​

Attachments:

Answers

Answered by skdruv760
0

Answer:

1 . In given figure , PQ=RS and ∠ORS=48

0

.

In given figure O is the center of circle and point P,Q,R and S on the circumference of circle

Then line OP, OQ ,OR and OS are the radius of circle

So OP=OQ=OR=OS

In ΔOPQ and ΔORS

PQ=RS (Given )

OP=OR (Radius of circle)

OQ=OS (Radius of circle)

∴ΔPOQ≅ΔORS

∠ORS=∠OPQ=48

0

Given ∠ORS=48

0

OR=OS (radius)

∴∠OSR=∠ORS=48

0

Given\angle ORS=48^{0}$$

In ΔORS

∠ROS+∠ORS+∠OSR=180

0

⇒∠ROS+48+48=180

⇒∠ROS=180−48−48=84

0

∠OPQ=48

0

,∠ROS=84

0

Similar questions