Math, asked by ⲎσⲣⲉⲚⲉⲭⳙⲊ, 9 months ago

please send image of your answer and I will mark the correct answer as brainliest ‍​

Attachments:

Answers

Answered by AnnuMishra11
5

Volume : 4186.66 cm^3.

_____✌_____

Attachments:
Answered by Anonymous
40

Answer:

\large{\underline{\underline{\textsf{\textbf{Diagram : -}}}}}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(2.3,0)(2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,2.121)(0,2.3)\qbezier(-2.3,0)(-2.121,-2.121)(0,-2.3)\qbezier(2.3,0)(2.121,-2.121)(-0,-2.3)\qbezier(-2.3,0)(0,-1)(2.3,0)\qbezier(-2.3,0)(0,1)(2.3,0)\thinlines\qbezier (0,0)(0,0)(0.2,0.3)\qbezier (0.3,0.4)(0.3,0.4)(0.5,0.7)\qbezier (0.6,0.8)(0.6,0.8)(0.8,1.1)\qbezier (0.9,1.2)(0.9,1.2)(1.1,1.5)\qbezier (1.2,1.6)(1.2,1.6)(1.38,1.9)\put(0.2,1){\bf 10\ cm}\end{picture}

\begin{gathered}\end{gathered}

\large{\underline{\underline{\textsf{\textbf{Given : -}}}}}

  • ↠ Surface area of sphere = 1256 cm².

\begin{gathered}\end{gathered}

\large{\underline{\underline{\textsf{\textbf{To Find : -}}}}}

  • ↠ Volume of sphere

\begin{gathered}\end{gathered}

\large{\underline{\underline{\textsf{\textbf{Using Formulas : -}}}}}

\small{\bigstar{\underline{\boxed{\sf{\pink{Surface \:  area  \: of  \: sphere = 4\pi{r}^{2}}}}}}}

\small{\bigstar{\underline{\boxed{\sf{\pink{Volume \:  of  \: sphere =  \dfrac{4}{3}\pi{r}^{3}}}}}}}

\small\bigstar Where :-

  • ↠ π = 3.14
  • ↠ r = radius

\begin{gathered}\end{gathered}

\large{\underline{\underline{\textsf{\textbf{Solution : -}}}}}

\small\bigstar Firstly, finding the radius of sphere by substituting the values in the formula :-

\small{\dashrightarrow{\sf{Surface \:  area  \: of  \: sphere = 4\pi{r}^{2}}}}

\small{\dashrightarrow{\sf{1256 = 4 \times 3.14\times  {r}^{2}}}}

\small{\dashrightarrow{\sf{1256= 12.56\times  {r}^{2}}}}

\small{\dashrightarrow{\sf{{(Radius)}^{2} =  \dfrac{1256}{12.56}}}}

\small{\dashrightarrow{\sf{{(Radius)}^{2} =  \dfrac{1256 \times 100}{12.56 \times 100}}}}

\small{\dashrightarrow{\sf{{(Radius)}^{2} =  \dfrac{125600}{1256}}}}

\small{\dashrightarrow{\sf{{(Radius)}^{2} = \cancel{\dfrac{125600}{1256}}}}}

\small{\dashrightarrow{\sf{{(Radius)}^{2} =100}}}

\small{\dashrightarrow{\sf{Radius = \sqrt{100} }}}

\small{\dashrightarrow{\sf{Radius = \sqrt{ 10\times 10}}}}

\small{\dashrightarrow{\underline{\underline{\sf{Radius=10 \: cm}}}}}

\normalsize{\bigstar{\underline{\boxed{\sf{\purple{Radius  \: of  \: sphere  =10 \: cm}}}}}}

Hence, the radius of sphere is 10 cm.

\begin{gathered}\end{gathered}

\small\bigstar Now, finding the volume of sphere by substituting the values in the formula :-

\small{\dashrightarrow{\sf{Volume \:  of  \: sphere =  \dfrac{4}{3}\pi{r}^{3}}}}

\small{\dashrightarrow{\sf{Volume \:  of  \: sphere =  \dfrac{4}{3} \times 3.14 \times {(10)}^{3}}}}

\small{\dashrightarrow{\sf{Volume \:  of  \: sphere =  \dfrac{4 \times 3.14}{3} \times (10 \times 10 \times 10)}}}

\small{\dashrightarrow{\sf{Volume \:  of  \: sphere =  \dfrac{12.56}{3} \times 1000}}}

\small{\dashrightarrow{\sf{Volume \:  of  \: sphere =  \dfrac{12.56 \times 1000}{3}}}}

\small{\dashrightarrow{\sf{Volume \:  of  \: sphere =  \dfrac{12560}{3}}}}

\small{\dashrightarrow{\sf{Volume \:  of  \: sphere = \cancel{\dfrac{12560}{3}}}}}

\small{\dashrightarrow{\underline{\underline{\sf{Volume \:  of  \: sphere  \approx 4186.66 \:  {cm}^{3}}}}}}

\normalsize{\bigstar{\underline{\boxed{\sf {\purple{Volume \:  of  \: sphere  \approx 4186.66 \:  {cm}^{3}}}}}}}

Hence, the volume of sphere is 4186.66 cm³.

\begin{gathered}\end{gathered}

\large{\underline{\underline{\textsf{\textbf{Learn More : -}}}}}

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

Similar questions