please send me answer
Answers
Step-by-step explanation:
hope you understand and like it.
Question:
Prove that:
√[ ( sec A + tan A ) / ( sec A - tan A ) ] = ( 1 + sin A ) / cos A
Answer:
√[ ( sec A + tan A ) / ( sec A - tan A ) ] = ( 1 + sin A ) / cos A
Step-by-step-explanation:
The given trigonometric equation is
√[ ( sec A + tan A ) / ( sec A - tan A ) ] = ( 1 + sin A ) / cos A
We have to prove this equation.
Now,
√[ ( sec A + tan A ) / ( sec A - tan A ) ] = ( 1 + sin A ) / cos A
∴ RHS = ( 1 + sin A ) / cos
⇒ RHS = ( 1 / cos A ) + ( sin A / cos A )
⇒ RHS = sec A + tan A
⇒ RHS = ( sec A + tan A ) / 1
Taking square and square root on both numerator and denominator, we get,
⇒ RHS = √[ ( sec A + tan A )² / 1² ]
⇒ RHS = √[ ( sec A + tan A )² / 1 ]
We know that,
1 + tan² A = sec² A
∴ sec² A - tan² A = 1
⇒ RHS = √[ ( sec A + tan A )² / ( sec² A - tan² A ) ]
We know that
a² - b² = ( a + b ) ( a - b )
⇒ RHS = √{ ( sec A + tan A )² / [ ( sec A + tan A ) ( sec A - tan A ) ] }
⇒ RHS = √{ ( sec A + tan A ) ( sec A + tan A ) / [ ( sec A + tan A ) ( sec A - tan A ) ] }
⇒ RHS = √[ ( sec A + tan A ) / ( sec A - tan A ) ]
LHS = √[ ( sec A + tan A ) / ( sec A - tan A ) ]
∴ LHS = RHS