Math, asked by gaikwadkhushi540, 20 hours ago

please send me solutions of all

Attachments:

Answers

Answered by Anonymous
38

i) (103)²

\boxed{ \tt \: Using \:  the \:  identity }

⟶ \red{ (a+b)^{2}  =  {a}^{2}  + 2ab +  {b}^{2} }

(103)^{2}  = (100 + 3)^{2}

= (100)^{2}  + 2  \times 100 \times 3 + (3)^{2}

= 10000 + 600 + 9

= 10609

ii) 51²

\boxed{ \tt \: Using \:  the \:  identity } \:  \:

⟶ \red{ (a+b)^{2}  =  {a}^{2}  + 2ab +  {b}^{2} } \:

 (51 )^{2} = (50 + 1)^{2}

 = 50 ^{2} + 2  \times 50 \times 1+ (1)^{2}

= 2500 + 100 + 1 \:

= 2601

iii) 98²

\boxed{ \tt \: Using \:  the \:  identity } \:

⟶ \red{ (a - b)^{2}  =  {a}^{2}  + 2ab  -  {b}^{2} } \:

(98)^{2}  = (100 - 2)^{2}

= (100)^{2}   - 2  \times 100 \times 2 + (2)^{2}

 = 10000 - 400 + 4

 = 9604

iv) (9.9)²

\boxed{ \tt \: Using \:  the \:  identity }

⟶ \red{ (a - b)^{2}  =  {a}^{2}  + 2ab  -  {b}^{2} } \:  \:

(9.9)^{2}  = (10 - 0.1)^{2}

 = (10)^{2}  + (0.1)^{2} - 2 × 10 × 0.1

 = 100 + 0.01 - 2

 = 98 + 0.01

 = 98.01

v) 102×98

\boxed{ \tt \: Using \:  the \:  identity }  \:

⟶ \red{(a + b) (a - b) =  {a}^{2}    -  {b}^{2} } \:

(102  \times 98)= (100+ 2) (100-2)

a = 100, b= 2

 = (100+2)(100-2) = 100-24

 = 10000-4

 = 102 \times 98  = 9996

vi) 9.9×10.1

\boxed{ \tt \: Using \:  the \:  identity }

⟶ \red{(a + b) (a - b) =  {a}^{2}    -  {b}^{2} } \:

(9.9 \times 10.1)= (10 - 0.1) (10 +0.1)

= (10)^{2} - (0.1)^{2}

= 100 - 0.01

= 99.99

vii) 243²-157²

\boxed{ \tt \: Using \:  the \:  identity }  \:

⟶  \red{a^2-b^2=(a + b)   (a - b)}

(243^2-157^2)=(243-157)  (243+157)

= 86 \times 400

 =34400

viii) 139²-138²

\boxed{ \tt \: Using \:  the \:  identity }

⟶  \red{a^2-b^2=(a + b)   (a - b)} \:

(139^{2} -138^{2}) =(139+138)(139-138)

=277 \times 1

=277 \:

Answered by MasterDhruva
23

Solution (1) :-

\sf \longmapsto 103^2

\sf \longmapsto (a + b)^2 = a^2 + 2ab + b^2

Here,

a = 100

b = 3

\sf \longmapsto (100 + 3)^2 = 100^2 + 2(100)(3) + 3^2

\sf \longmapsto 100^2 + 2(100)(3) + 3^2

\sf \longmapsto 10000 + 600 + 9

\sf \longmapsto 10609

Solution (2) :-

\sf \longmapsto 51^2

\sf \longmapsto (a + b)^2 = a^2 + 2ab + b^2

Here,

a = 50

b = 1

\sf \longmapsto (50 + 1)^2 = 50^2 + 2(50)(1) + 1^2

\sf \longmapsto 50^2 + 2(50)(1) + 1^2

\sf \longmapsto 2500 + 100 + 1

\sf \longmapsto 2601

Solution (3) :-

\sf \longmapsto 98^2

\sf \longmapsto (a - b)^2 = a^2 - 2ab + b^2

Here,

a = 100

b = 2

\sf \longmapsto (100 - 2)^2 = 100^2 - 2(100)(2) + 2^2

\sf \longmapsto 100^2 - 2(100)(2) + 2^2

\sf \longmapsto 10000 - 400 + 4

\sf \longmapsto 9606

Solution (4) :-

\sf \longmapsto 9.9^2

\sf \longmapsto (a - b)^2 = a^2 - 2ab + b^2

Here,

a = 10

b = 0.1

\sf \longmapsto (10 - 0.1)^2 = 10^2 - 2(10)(0.1) + 0.1^2

\sf \longmapsto 10^2 - 2(10)(0.1) + 0.1^2

\sf \longmapsto 100 - 2 + 0.01

\sf \longmapsto 98.01

Solution (5) :-

\sf \longmapsto 102 \times 98

\sf \longmapsto (a + b)(a - b) = a^2 - b^2

Here,

a = 100

b = 2

\sf \longmapsto (100 + 2)(100 - 2) = 100^2 - 2^2

\sf \longmapsto 100^2 - 2^2

\sf \longmapsto 10000 - 4

\sf \longmapsto 9996

Solution (6) :-

\sf \longmapsto 9.9 \times 10.1

\sf \longmapsto (a - b)(a + b) = a^2 - b^2

Here,

a = 10

b = 0.1

\sf \longmapsto (10 - 0.1)(10 + 0.1) = 10^2 - 0.1^2

\sf \longmapsto 10^2 - 0.1^2

\sf \longmapsto 100 - 0.01

\sf \longmapsto 99.99

Solution (7) :-

\sf \longmapsto 243^2 - 157^2

\sf \longmapsto a^2 - b^2 = (a + b)(a - b)

Here,

a = 243

b = 157

\sf \longmapsto 243^2 - 157^2 = (243 + 157)(243 - 157)

\sf \longmapsto (243 + 157)(243 - 157)

\sf \longmapsto (400)(86)

\sf \longmapsto 34400

Solution (8) :-

\sf \longmapsto 139^2 - 138^2

\sf \longmapsto a^2 - b^2 = (a + b)(a - b)

Here,

a = 139

b = 138

\sf \longmapsto 139^2 - 138^2 = (139 + 138)(139 - 138)

\sf \longmapsto (239 + 138)(239 - 138)

\sf \longmapsto (377)(1)

\sf \longmapsto 377

Hence solved !!

Similar questions