Math, asked by WARmachine68, 1 month ago

please send the solution to this question.​

Attachments:

Answers

Answered by ramavathurajeevn
2

Answer:

2^-loga

Step-by-step explanation:

here when you change last ste you get the same thing.

Attachments:
Answered by mathdude500
8

\large\underline{\sf{Given \:Question - }}

Solve,

\rm :\longmapsto\: {5}^{logx} + 5 {x}^{log5} = 3 \: where \: the \: base \: of \: log \: is \: a

 \:  \:  \:  \:  \:  \:  \rm \: a) \: x =  {2}^{  - log(a)  }  \: where \: base \: of \: log \: is \: 6

 \:  \:  \:  \:  \:  \:  \rm \: b) \: x =  {2}^{  - log(a)  }  \: where \: base \: of \: log \: is \: 5

 \:  \:  \:  \:  \:  \:  \rm \: c) \: x =  {2}^{  - log(a)  }  \: where \: base \: of \: log \: is \: 4

 \:  \:  \:  \:  \:  \:  \rm \: d) \: x =  {2}^{  - log(a)  }  \: where \: base \: of \: log \: is \: 3

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: {5}^{logx} + 5 {x}^{log5} = 3 \: where \: the \: base \: of \: log \: is \: a

can be rewritten as

\rm :\longmapsto\: {5}^{ log_{a}(x) }  + 5 {x}^{ log_{a}(5) }  = 3

We know,

 \boxed{ \bf{ \:  {x}^{logy} =  {y}^{logx}}}

So, using this property, it can ve rewritten as

\rm :\longmapsto\: {5}^{ log_{a}(x) }  + 5 \times  {5}^{ log_{a}(x) }  = 3

can be again rewritten as

\rm :\longmapsto\:6 \times {5}^{ log_{a}(x) }  = 3

\rm :\longmapsto\: {5}^{ log_{a}(x) }  = \dfrac{3}{6}

\rm :\longmapsto\: {5}^{ log_{a}(x) }  = \dfrac{1}{2}

\rm :\longmapsto\: {5}^{ log_{a}(x) }  =  {2}^{ - 1}

We know,

 \boxed{ \bf{ \:  {a}^{ log_{a}(x) } = x}}

Using this identity, on RHS, we get

\rm :\longmapsto\: {5}^{ log_{a}(x) }  =   {5}^{ log_{5}( {2}^{ - 1} ) }

\bf\implies \: log_{a}(x) =  log_{5}( {2}^{ - 1} )

We know,

 \boxed{ \bf{ \:  log_{x}(y) = z \: \bf\implies \:y =  {x}^{z}}}

So, using this result, we get

\bf\implies \:x =  {a}^{ log_{5}( {2}^{ - 1} ) }

We know,

 \boxed{ \bf{ \:  {x}^{logy} =  {y}^{logx}}}

So, using this

\bf\implies \:x =  {2}^{  - 1log_{5}( a ) }

\bf\implies \:x =  {2}^{  - log_{5}( a ) }

\bf\implies \:x =  {2}^{  - log(a)  }  \: where \: base \: of \: log \: is \: 5

See the proof of

 \boxed{ \bf{ \:  {x}^{logy} =  {y}^{logx}}}

Consider,

\rm :\longmapsto\: {x}^{logy}

can be rewritten as

 \rm \:  =  \:  \:  {e}^{log {x}^{logy} }

 \rm \:  =  \:  \:  {e}^{log y \: logx }

 \rm \:  =  \:  \:  {e}^{log x\: logy }

 \rm \:  =  \:  \:  {e}^{log {y}^{logx} }

 \rm \:  =  \:  \:   {y}^{logx}

Hence, Proved

Similar questions