Math, asked by sreya478, 1 month ago

please simplify the above problem..​

Attachments:

Answers

Answered by hashman01
1

Here's the simplification.

 {4}^{2x + 7 - x + 3}  \\  \\  {4}^{x + 10}

Answered by itzPapaKaHelicopter
4

 \textbf{Given:}  \:  \frac{ {4}^{x + 2}  +  {4}^{x + 5} -  {4}^{x +  3}  }{ {4}^{x + 6} -  {4}^{x + 2}  }

\sf \colorbox{pink} {To Find : } \: \sf \colorbox{pink} { Simply}

\huge \fbox \purple{Solution:}

 = \frac{ {4}^{x + 2}  +  {4}^{x + 5} -  {4}^{x +  3}  }{ {4}^{x + 6} -  {4}^{x + 2}  }

 =   \frac{ {4}^{x} ( {4}^{2}  +  {4}^{5} -  {4}^{3})  }{ {4}^{x} ( {4}^{6} -  {4}^{2} ) }

 =  \frac{(1 +  {4}^{3}  -  {4}^{1} )}{ {4}^{2} ( {4}^{4} - 1) }

 =  \frac{1 + 64 - 4}{256 - 1}

 =  \frac{61}{255}

 \textbf{:Hence Value is }  \frac{61}{255}

 \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Similar questions