Math, asked by Jessicajackson, 1 month ago

Please simplify the following trigonometric identity.
\displaystyle\frac{1}{\sec\alpha-\tan\alpha}​

Answers

Answered by pihu4976
1

Answer:

Hope it helps you!!!!!!

Attachments:
Answered by Seafairy
25

To Find :

simplify the following trigonometric identity :- \displaystyle\frac{1}{\sec\alpha-\tan\alpha}

Solution :

\implies \sf  \dfrac{1}{ \sec\alpha-\tan\alpha}

\implies \sf \dfrac{1}{\sec\alpha}-\dfrac{1}{\tan\alpha}

\implies \sf \dfrac{1}{\dfrac{1}{\cos\alpha}}-\dfrac{1}{\dfrac{1}{\tan\alpha}}

\implies\sf \dfrac{\cos\alpha}{1}-\dfrac{\cos\alpha}{\sin\alpha}

\implies\sf \dfrac{\sin\alpha\cos\alpha-\cos\alpha}{\sin\alpha}

\implies \sf \cos\alpha \Big(\dfrac{\sin\alpha-1}{\sin\alpha}\Big)

\implies\sf \dfrac{ \cos\alpha}{\sin\alpha} \Big(\sin\alpha-1 \Big)

\implies\sf \cot\alpha \Big(\sin\alpha-1 \Big)

Formulas Applied :

  • \displaystyle\sf \frac{1}{\sec\theta}=\cos\theta

  • \displaystyle\sf  \tan\theta=\frac{\sin\theta}{\cos\theta}

  • \displaystyle \sf \frac{\cos\theta}{\sin\theta}=\cot\theta

Required Answer :

{\boxed{\boxed{\displaystyle\frac{1}{\sec\alpha-\tan\alpha}=\cot\alpha \Big(\sin\alpha-1 \Big)}}}

Similar questions