Math, asked by devansh9257, 6 hours ago

Please simplify the following using factorization method

 {x}^{2}  + ( \frac{a}{a + b}  +  \frac{a + b}{a} ) + 1 = 0

Answers

Answered by mathdude500
10

Appropriate Question

Solve the following using factorization method :-

\rm :\longmapsto\: {x}^{2} + \bigg(\dfrac{a}{a + b}  + \dfrac{a + b}{a} \bigg)x  + 1 = 0

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {x}^{2} + \bigg(\dfrac{a}{a + b}  + \dfrac{a + b}{a} \bigg)x  + 1 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{2} + \bigg(\dfrac{a}{a + b}  + \dfrac{a + b}{a} \bigg)x  + \dfrac{a + b}{a} \times \dfrac{a}{a + b}= 0

\rm :\longmapsto\: {x}^{2} + \dfrac{a}{a + b}x  + \dfrac{a + b}{a}x  + \dfrac{a + b}{a} \times \dfrac{a}{a + b}= 0

\rm :\longmapsto\:\bigg( {x}^{2} + \dfrac{a}{a + b}x \bigg) + \bigg(\dfrac{a + b}{a}x  + \dfrac{a + b}{a} \times \dfrac{a}{a + b}\bigg)= 0

\rm :\longmapsto\:x\bigg(x + \dfrac{a}{a + b}\bigg) + \dfrac{a + b}{a}\bigg(x + \dfrac{a}{a + b}\bigg) = 0

\rm :\longmapsto\:\bigg(x + \dfrac{a}{a + b}\bigg)\bigg(x + \dfrac{a + b}{a}\bigg) = 0

\rm\implies \:x \:  = \:   - \:  \dfrac{a}{a + b} \:  \: or \:  \: \: x \:  =   \:  - \:  \dfrac{a + b}{a}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by OoAryanKingoO78
0

Answer:

Appropriate Question

Solve the following using factorization method :-

\rm :\longmapsto\: {x}^{2} + \bigg(\dfrac{a}{a + b}  + \dfrac{a + b}{a} \bigg)x  + 1 = 0

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\: {x}^{2} + \bigg(\dfrac{a}{a + b}  + \dfrac{a + b}{a} \bigg)x  + 1 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{2} + \bigg(\dfrac{a}{a + b}  + \dfrac{a + b}{a} \bigg)x  + \dfrac{a + b}{a} \times \dfrac{a}{a + b}= 0

\rm :\longmapsto\: {x}^{2} + \dfrac{a}{a + b}x  + \dfrac{a + b}{a}x  + \dfrac{a + b}{a} \times \dfrac{a}{a + b}= 0

\rm :\longmapsto\:\bigg( {x}^{2} + \dfrac{a}{a + b}x \bigg) + \bigg(\dfrac{a + b}{a}x  + \dfrac{a + b}{a} \times \dfrac{a}{a + b}\bigg)= 0

\rm :\longmapsto\:x\bigg(x + \dfrac{a}{a + b}\bigg) + \dfrac{a + b}{a}\bigg(x + \dfrac{a}{a + b}\bigg) = 0

\rm :\longmapsto\:\bigg(x + \dfrac{a}{a + b}\bigg)\bigg(x + \dfrac{a + b}{a}\bigg) = 0

\rm\implies \:x \:  = \:   - \:  \dfrac{a}{a + b} \:  \: or \:  \: \: x \:  =   \:  - \:  \dfrac{a + b}{a}

\purple{\rule{45pt}{7pt}}\red{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}

Similar questions