Math, asked by aalok59, 1 year ago

please solve 9 and 10 no.

Attachments:

Answers

Answered by Anonymous
18

\bf{\large{\underline{\underline{Question:-}}}}

9. Simplify \sf{ \sqrt{3 + 2 \sqrt{2}}}

10. Simplify \sf{ \sqrt{3-2 \sqrt{2}}}

\bf{\large{\underline{\underline{Answer:-}}}}

\boxed{\sf{9.\: \sqrt{3 + 2 \sqrt{2}} = \sqrt{2} +1}}

\boxed{10.\:\sf{ \sqrt{3 - 2 \sqrt{2}} = \sqrt{2} -1}}

\bf{\large{\underline{\underline{Explanation:-}}}}

9. Simplify \bf{ \sqrt{3 + 2 \sqrt{2}}}

\tt{ \sqrt{3 + 2 \sqrt{2}}}

It can be written as :

\tt{= \sqrt{2 + 1 + 2 \sqrt{2}}}

It can be written as,

\tt{= \sqrt{ ( \sqrt{2})^2 + 1^2 + 2 (\sqrt{2})(1)}}

Now it is in the form of x² + y² + 2xy

We know that (x + y)² = x² + y² + 2xy

Here x = √2 and y = 1

By substituting the values in the identity we have,

\tt{= \sqrt{ {( \sqrt{2} +1)}^{2} }}

\tt{= \sqrt{2} +1}

\boxed{\sf{ \sqrt{3 + 2 \sqrt{2}} = \sqrt{2} +1}}

10. Simplify \bf{ \sqrt{3 - 2 \sqrt{2}}}

\tt{ \sqrt{3 - 2 \sqrt{2}}}

It can be written as :

\tt{= \sqrt{2 + 1 - 2 \sqrt{2}}}

It can be written as,

\tt{= \sqrt{ ( \sqrt{2})^2 + 1^2 - 2 (\sqrt{2})(1)}}

Now it is in the form of x² + y² - 2xy

We know that (x - y)² = x² + y² - 2xy

Here x = √2 and y = 1

By substituting the values in the identity we have,

\tt{= \sqrt{ {( \sqrt{2} - 1)}^{2} }}

\tt{= \sqrt{2} -1}

\boxed{\sf{ \sqrt{3 - 2 \sqrt{2}} = \sqrt{2} -1}}

\bf{\large{\underline{\underline{Identity\:Used:-}}}}

[1] (x + y)² = x² + y² + 2xy

[2] (x - y)² = x² + y² - 2xy

\bf{\large{\underline{\underline{Some\:Important\:Identities:-}}}}

[1] (x + y)² = x² + y² + 2xy

[2] (x - y)² = x² + y² - 2xy

[3] (x + y)(x - y) = x² - y²

[4] (x + a)(x + b) = x² + (a + b)x + ab


BrainlyGod: Hard work ^_^
Anonymous: ur great bro ⭐⭐⭐
Anonymous: ur answers are really great
Similar questions