Please solve all the three questions. Doing on pen and paper is appreciated. Thank you.
Answers
Answer:
Step-by-step explanation:
8) [2⁻² * 3³ / 2³ * 3⁻⁵] ⁻⁵/²
=> [3³ * 3⁵ / 2³ * 2² ]⁻⁵/² ( ∵ x⁻ⁿ = 1/xⁿ)
=> [3⁸/2⁵]⁻⁵/² (∵ xᵃ * xᵇ = xᵃ⁺ᵇ)
=> [3⁸]⁻⁵/² / [2⁵]⁻⁵/²
=> 3⁻²⁰/ 2⁻²⁵/² (∵(xᵃ)ᵇ = xᵃᵇ)
=> 2²⁵/² / 3²⁰ ( ∵ x⁻ⁿ = 1/xⁿ)
=> √(2²⁵)/3²⁰
=> √(2²⁴ x 2¹)/3²⁰
=> 2¹²√2/3²⁰
7. Given x = 1 - √2.
1/x = 1/1 - √2
//multiply numerator and denominator by 1 + √2
=> 1/x = [1/1 - √2] [1 + √2 / 1 + √2]
= 1 + √2 / (1 - √2) (1 + √2)
= 1 +√2 / 1 - 2 (∵ (a + b)(a-b) = a² - b²)
= - (1 + √2)
Now (x - 1/x)² = {(1 - √2) - [-(1 +√2)] }²
= {1 - √2 + 1 + √2}²
= 2²
= 4.
6. Given x = √5 - √2 / √5 + √2
y = √5 + √2/√5 - √2
x + y = [√5 - √2 / √5 + √2 ] + [√5 + √2/√5 - √2]
= (√5 - √2)² + (√5 + √2)² /(√5 + √2)(√5 - √2)
= 5 + 2 - 2√10 + 5 + 2 + 2√10 / (√5)² - (√2)²
= 14/3.
xy = [√5 - √2 / √5 + √2 ] * [√5 + √2/√5 - √2] = 1
Now x² + xy + y² = (x + y)² - xy
= (14/3)² - 1
= 196/9 - 1
= 187/9.