please solve all these equations
Answers
Step-by-step explanation:
(b)
Cross Multiplying, we get
→ 2(2x - 11) = 3(6x - 19)
→ 4x - 22 = 18x - 57
→ 4x - 18x = - 57 + 22
→ - 14x = - 35
→ 14x = 35
→ x = 35/14
(c)
→
→
Cross Multiplying, we get
→ 22x + 4 = 5(4x - 1)
→ 22x + 4 = 20x - 5
→ 22x - 20x = - 5 - 4
→ 2x = - 9
→ x = - 9/2
(d)
→
→
Cross Multiplying, we get
→ 2(4x - 3) = 1(7x - 2)
→ 8x - 6 = 7x - 2
→ 8x - 7x = - 2 + 6
→ x = 4
(e)
→
→ 3(x + 5) + 2(x - 5) = 25
→ 3x + 15 + 2x - 10 = 25
→ 5x + 5 = 25
→ 5x = 25 - 5
→ 5x = 20
→ x = 20/5
→ x = 4
(f) (5x - 1)(x + 3) = (x - 5)(5x + 1) + 40
→ 5x(x + 3) - 1(x + 3) = x(5x + 1) - 5(5x + 1) + 40
→ 5x² + 15x - x - 3 = 5x² + x - 25x - 5 + 40
→ 15x - x - 3 = x - 25x - 5 + 40
→ 14x - 3 = - 24x + 35
→ 14x + 24x = 35 + 3
→ 38x = 38
→ x = 38/38
→ x = 1
(g)
→
→
→ (10)(12) = 3(x - 3) + 6(x - 1) + 4(x - 2)
→ 120 = 3x - 9 + 6x - 6 + 4x - 8
→ 120 = 13x - 23
→ 13x = 120 + 23
→ 13x = 143
→ x = 143/13
→ x = 11
(h)
→
→
→
→
→
→
→ 3.3 = x + 6.1
→ x = 3.3 - 6.1
→ x = - 2.8
(i) (x + 4)² - (x - 5)² = 9
Identity : (a + b)² = a² + b² + 2ab
Here, a = x, b = 4
(a - b)² = a² + b² - 2ab
Here, a = x, b = 5
→ [ (x)² + (4)² + 2(x)(4) ] - [ (x)² + (5)² - 2(x)(5) ] = 9
→ [ x² + 16 + 8x ] - [ x² + 25 - 10x ] = 9
→ x² + 16 + 8x - x² - 25 + 10x = 9
→ 16 + 8x - 25 + 10x = 9
→ - 9 + 18x = 9
→ 18x = 9 + 9
→ 18x = 18
→ x = 18/18
→ x = 1
(j)
→
→
→
→
→
→
→
→ 39x - 5 = (4)(28)
→ 39x - 5 = 112
→ 39x = 112 + 5
→ 39x = 117
→ x = 117/39
→ x = 3
(k)
Cross Multiplying, we get
→ (3x + 5)(4x + 7) = (3x + 4)(4x + 2)
→ 3x(4x + 7) + 5(4x + 7) = 3x(4x + 2) + 4(4x + 2)
→ 12x² + 21x + 20x + 35 = 12x² + 6x + 16x + 8
→ 21x + 20x + 35 = 6x + 16x + 8
→ 41x + 35 = 22x + 8
→ 41x - 22x = 8 - 35
→ 19x = - 27
→ x = - 27/19
(l)
Cross Multiplying, we get
→ 0.8 + 0.7x = (0.86)(x)
→ 0.8 + 0.7x = 0.86x
→ 0.86x - 0.7x = 0.8
→ 0.16x = 0.8
→ x = 0.8/0.16
→ x = 80/16
→ x = 5
(b) \dfrac{2}{6x - 19} = \dfrac{3}{2x - 11}
6x−19
2
=
2x−11
3
Cross Multiplying, we get
→ 2(2x - 11) = 3(6x - 19)
→ 4x - 22 = 18x - 57
→ 4x - 18x = - 57 + 22
→ - 14x = - 35
→ 14x = 35
→ x = 35/14
(c) \dfrac{5(2x - 1) + 3(4x + 3)}{4x - 1} = 5
4x−1
5(2x−1)+3(4x+3)
=5
→ \dfrac{10x - 5 + 12x + 9}{4x - 1} = 5
4x−1
10x−5+12x+9
=5
→ \dfrac{22x + 4}{4x - 1} = 5
4x−1
22x+4
=5
Cross Multiplying, we get
→ 22x + 4 = 5(4x - 1)
→ 22x + 4 = 20x - 5
→ 22x - 20x = - 5 - 4
→ 2x = - 9
→ x = - 9/2
(d) \dfrac{2(3x - 1) - (2x + 1)}{7x - 2} = \dfrac{1}{2}
7x−2
2(3x−1)−(2x+1)
=
2
1
→ \dfrac{6x - 2 - 2x - 1}{7x - 2} = \dfrac{1}{2}
7x−2
6x−2−2x−1
=
2
1
→ \dfrac{4x - 3}{7x- 2} = \dfrac{1}{2}
7x−2
4x−3
=
2
1
Cross Multiplying, we get
→ 2(4x - 3) = 1(7x - 2)
→ 8x - 6 = 7x - 2
→ 8x - 7x = - 2 + 6
→ x = 4
(e) \dfrac{x + 5}{2} + \dfrac{x - 5}{3} = \dfrac{25}{6}
2
x+5
+
3
x−5
=
6
25
→ \dfrac{3(x + 5) + 2(x - 5)}{6} = \dfrac{25}{6}
6
3(x+5)+2(x−5)
=
6
25
→ 3(x + 5) + 2(x - 5) = 25
→ 3x + 15 + 2x - 10 = 25
→ 5x + 5 = 25
→ 5x = 25 - 5
→ 5x = 20
→ x = 20/5
→ x = 4
(f) (5x - 1)(x + 3) = (x - 5)(5x + 1) + 40
→ 5x(x + 3) - 1(x + 3) = x(5x + 1) - 5(5x + 1) + 40
→ 5x² + 15x - x - 3 = 5x² + x - 25x - 5 + 40
→ 15x - x - 3 = x - 25x - 5 + 40
→ 14x - 3 = - 24x + 35
→ 14x + 24x = 35 + 3
→ 38x = 38
→ x = 38/38
→ x = 1
(g) 10 - (\frac{x - 1}{2}) - (\frac{x - 2}{3}) = \frac{x - 3}{4} 10−(
2
x−1
)−(
3
x−2
)=
4
x−3
→ 10 = \dfrac{x - 3}{4} + \dfrac{x - 1}{2} + \dfrac{x - 2}{3} 10=
4
x−3
+
2
x−1
+
3
x−2
→ 10 = \dfrac{3(x - 3) + 6(x - 1) + 4(x - 2)}{12} 10=
12
3(x−3)+6(x−1)+4(x−2)
→ (10)(12) = 3(x - 3) + 6(x - 1) + 4(x - 2)
→ 120 = 3x - 9 + 6x - 6 + 4x - 8
→ 120 = 13x - 23
→ 13x = 120 + 23
→ 13x = 143
→ x = 143/13
→ x = 11
(h) \dfrac{0.5(x - 0.4)}{0.35} - \dfrac{0.6(x - 2.71)}{0.42} =x + 6.1
0.35
0.5(x−0.4)
−
0.42
0.6(x−2.71)
=x+6.1
→ \dfrac{0.5x - 0.20}{0.35} - \dfrac{0.6x - 1.626}{0.42} = x + 6.1
0.35
0.5x−0.20
−
0.42
0.6x−1.626
=x+6.1
→ \dfrac{6(0.5x - 0.20) - 5(0.6x - 1.626)}{2.10} = x + 6.1
2.10
6(0.5x−0.20)−5(0.6x−1.626)
=x+6.1
→ \dfrac{3.0x - 1.20 - 3.0x + 8.13}{2.10} = x + 6.1
2.10
3.0x−1.20−3.0x+8.13
=x+6.1
→ \dfrac{ - 1.20 + 8.13}{2.10} = x + 6.1
2.10
−1.20+8.13
=x+6.1
→ \dfrac{6.93}{2.10} = x + 6.1
2.10
6.93
=x+6.1
→ \dfrac{693}{210} = x + 6.1
210
693
=x+6.1
→ 3.3 = x + 6.1
→ x = 3.3 - 6.1
→ x = - 2.8
(i) (x + 4)² - (x - 5)² = 9
Identity : (a + b)² = a² + b² + 2ab
Here, a = x, b = 4
(a - b)² = a² + b² - 2ab
Here, a = x, b = 5
→ [ (x)² + (4)² + 2(x)(4) ] - [ (x)² + (5)² - 2(x)(5) ] = 9
→ [ x² + 16 + 8x ] - [ x² + 25 - 10x ] = 9
→ x² + 16 + 8x - x² - 25 + 10x = 9
→ 16 + 8x - 25 + 10x = 9
→ - 9 + 18x = 9
→ 18x = 9 + 9
→ 18x = 18
→ x = 18/18
→ x = 1
(j) \dfrac{7x - 1}{4} - \dfrac{1}{7} (2x - \frac{1 - x}{2} ) = 4
4
7x−1
−
7
1
(2x−
2
1−x
)=4
→ \frac{7x - 1}{4} - \dfrac{1}{7} ( \frac{2(2x) - (1 - x)}{2} ) = 4
4
7x−1
−
7
1
(
2
2(2x)−(1−x)
)=4
→ \dfrac{7x - 1}{4} - \dfrac{1}{7} ( \frac{4x - 1 + x}{2} ) = 4
4
7x−1
−
7
1
(
2
4x−1+x
)=4
→ \dfrac{7x - 1}{4} - \dfrac{1}{7} ( \frac{5x - 1}{2} ) = 4
4
7x−1
−
7
1
(
2
5x−1
)=4
→ \dfrac{7x - 1}{4} - \dfrac{5x - 1}{14} = 4
4
7x−1
−
14
5x−1
=4
→ \dfrac{7(7x - 1) - 2(5x - 1)}{28} = 4
28
7(7x−1)−2(5x−1)
=4
→ \dfrac{49x - 7 - 10x + 2}{28} = 4
28
49x−7−10x+2
=4
→ \dfrac{39x - 5}{28} = 4
28
39x−5
=4
→ 39x - 5 = (4)(28)
→ 39x - 5 = 112
→ 39x = 112 + 5
→ 39x = 117
→ x = 117/39
→ x = 3
(k) \dfrac{3x + 5}{4x + 2} = \dfrac{3x + 4}{4x + 7}
4x+2
3x+5
=
4x+7
3x+4
Cross Multiplying, we get
→ (3x + 5)(4x + 7) = (3x + 4)(4x + 2)
→ 3x(4x + 7) + 5(4x + 7) = 3x(4x + 2) + 4(4x + 2)
→ 12x² + 21x + 20x + 35 = 12x² + 6x + 16x + 8
→ 21x + 20x + 35 = 6x + 16x + 8
→ 41x + 35 = 22x + 8
→ 41x - 22x = 8 - 35
→ 19x = - 27
→ x = - 27/19
(l) \dfrac{0.8 + 0.7x}{x} = 0.86
x
0.8+0.7x
=0.86
Cross Multiplying, we get
→ 0.8 + 0.7x = (0.86)(x)
→ 0.8 + 0.7x = 0.86x
→ 0.86x - 0.7x = 0.8
→ 0.16x = 0.8
→ x = 0.8/0.16
→ x = 80/16
→ x = 5