Math, asked by raman4393, 1 year ago

Please solve as fast as you can :-
Simply :- tan
 \tan^{ - 1}( \ \cos(x)  \div    1 -  \sin(x))

Answers

Answered by Anonymous
3

Answer \:  \\  \\  \tan {}^{ - 1} ( \frac{ \cos(x) }{1 -  \sin(x) } )  \\  \\ replace \:  \:  \:  \cos(x)  \:  \: by \:  \:  \:   \cos {}^{2} ( \frac{x}{2} )  -  \sin {}^{2} ( \frac{x}{2} )  \\ and \:  \:  \:  \\ 1 -  \sin(x)  \:  \: by \:  \:  \: ( \cos( \frac{x}{2}) -  \sin( \frac{x}{2} )  )  {}^{2}  \\  \\  \\  \tan {}^{ - 1} ( \frac{ \cos {}^{2} ( \frac{x}{2} ) -  \sin {}^{2} ( \frac{x}{2} )  }{( \cos( \frac{x}{2} ) -  \sin( \frac{x}{2} )) {}^{2}   } )  \\  \\  \\  \tan {}^{ - 1} ( \frac{( \cos( \frac{x}{2}  )  -  \sin( \frac{x}{2} ) ) \times( \cos( \frac{x}{2} )   +  \sin( \frac{x}{2} )) }{( \cos( \frac{x}{2} ) -  \sin( \frac{x}{2} )) \times ( \cos( \frac{x}{2} )  -  \sin( \frac{x}{2} ))   } )  \\  \\  \\  \tan {}^{ - 1} ( \frac{ \cos( \frac{x}{2} )  +  \sin( \frac{x}{2} ) }{ \cos( \frac{x}{2} )  -  \sin( \frac{x}{2} ) } )  \\  \\  \\  \tan {}^{ - 1} ( \frac{ \cos( \frac{x}{2} )(1 +  \frac{ \sin( \frac{x}{2} ) }{ \cos( \frac{x}{2} ) }) }{ \cos(  \frac{x}{2}  )(1 -  \frac{ \sin( \frac{x}{2} ) }{ \cos( \frac{x}{2} ) })  } )  \\  \\  \tan {}^{ - 1} ( \frac{1 +  \tan( \frac{x}{2} ) }{1 -  \tan( \frac{x}{2} ) } )  \\  \\   \tan {}^{ - 1} ( \tan  ( \frac{\pi}{4} +  \frac{x}{2}  ) ) \\  \\  \frac{\pi}{4}  +  \frac{x}{2}  \\  \\ therefore \:  \:  \:  \:  \:  \:  \\  \\   \tan( \frac{ \cos(x) }{1 -  \sin(x) } )  =  \frac{\pi}{4}  +  \frac{x}{2}  \\  \\  \\ NOTE \:  \\  \\  \cos(2 \alpha )  =  \cos {}^{2} ( \alpha ) -  \sin {}^{2} ( \alpha )

Similar questions